
NASA Conference Publication 3141

1992 Goddard Conference
on Space Applications of

Artificial Intelligence

HI/63

i

m ____

m_

_ Im

__r

d_

T_

r _ _Ji_r__

m

. mu_

NASA Conference Publication 3141

1992 Goddard Conference
on Space Applications of

Artificial Intelligence

James L. Rash, Editor

NASA Goddard Space Flight Center

Greenbelt, Maryland

I"

Proceedings of a conference held at
Ooddard Space Flight Center

Greenbelt, Maryland

May 5--6, 1992

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical

Information Program

199_

Foreword

The seventh annual Goddard Conference on Space Applications of

Artificial Intelligence is sponsored by the Mission Operations and Data
Systems Directorate, in cooperation with the American Institute of
Aeronautics and Astronautics (AIAA) National Capital Section. The

Conference provides a needed and effective forum for the exchange of
ideas, techniques, and experiences among the researchers and practitioners
of Artificial Intelligence throughout the space industry.

No conference simply "happens", even one that has had six previous
iterations of prototyping and testing. Thus, as always, there is the pleasant
duty of acknowledging the many people that have labored to bring about
this year's Conference. Thanks, of course, to the authors, whose work
makes our Conference possible and worthwhile; and to the invited speakers

and panelists, for sharing their tim.e and insight with us. Thanks, too, to
our Paper Review Panel, new to this year's Conference, for their time and
expertise. And, as always, special thanks to the Conference Planning
Committee for their dedication and for the hard, sometimes frantic work

that lies behind every aspect of the Conference, and that the Conference
depends upon for its existence.

Carl F. Hostetter
Chairman, 1992 Goddard Conference

on Space Applications of Artificial Intelligence

|=

III

PRECEDING PAGE BLANK NOT FILMED
IfA_JN[Lh I l_h/_LA3,

P r efa c e

This proceedings of the seventh annual Goddard Conference on Space
Applications of Artificial Intelligence, held May 5 and 6, 1992 at the
Goddard Space Flight Center, Greenbelt, Maryland, offers nineteen papers
demonstrating progress in the areas of planning and scheduling,
monitoring/diagnosis/control, tools, information management, neural
networks, and certain miscellaneous applications.

By virtue of an expanded paper selection process and a new editing cycle,
we believe this year's proceedings reaches a high point in quality. All of
the submitted papers were selected through blind review by a selection
committee drawn from NASA, industry, and academia. During the editing
cycle, time limitations permitted only minor revisions. The entire process,
considered to be worth the necessary additional time and effort, is likely to
be repeated, or extended even further, for next year's conference.

Under sponsorship of Goddard's Mission Operations and Data Systems
Directorate, the conference remains one of the most accessible of all the

means available to AI practitioners for communicating results relative to
space applications of artificial intelligence. No admission fees are charged,
and attendance is open to all U.S. citizens and qualified noncitizens. We
continue broadly soliciting contributions of technical papers appropriate to
the theme of the conference. Potential contributors should take note of the

call for papers for the 1993 conference printed at the end of this
proceedings document.

James L. Rash
Document Editor

v

Pi__CEDtlqG PAGE BLANK NOT FILMED

Table of Contents

Planning and Scheduling

Artificial Intelligence Approach to Planning the Robotic Assembly of
Large Tetrahedral Truss Structures ..

Luiz S. Homem-de-Mello

SLS-PLAN-IT: A Knowledge-Based Blackboard Scheduling System for
Spacelab Life Sciences Missions ...

Cheng-Yan Kao, Seok-Hua Lee

Detecting Opportunities for Parallel Observations on the Hubble Space
Telescope ..

Michael Lucks

3

13

29

Monitoring�Control�Diagnosis

Coordinating Complex Problem-Solving Among Distributed Intelligent
Agents ..

Richard M. Adler

Distributed Expert Systems for Ground and Space Applications
Brian Buckley, Louis Wheatcraft

Evaluating Model Accuracy for Model-Based Reasoning
Steve Chien, Joseph Roden

An Architecture for the Development of Real-Time Fault Diagnosis
Systems Using Model-Based Reasoning ..

Gardiner A. Hall, James Schuetzle, David LaVallee, Uday Gupta

The Achievement of Spacecraft Autonomy Through the Thematic
Application of Multiple Cooperating Intelligent Agents

Philip J. Rossomando

Intelligent Fault Isolation and Diagnosis for Communication Satellite
Systems ..

Donald P. Tallo, John Durkin, Edward J. Petrik

47

59

71

77

87

105

vii

t

Image�Data Classification�Interpretation

Feature Detection In Satellite Images Using Neural Network

Technology ...

Marijke F. Augusteijn, Arturo S. Dimalanta

Design of Neural Networks for Classification of Remotely Sensed

Imagery

Samir R. Chettri, Robert F. Cromp, Mark Birmingham

Improved Image Classification With Neural Networks by Fusing

Multispectral Signatures With Topological Data ..

Craig Harston, Chris Schumacher

Improved Interpretation of Satellite Altimeter Data Using Genetic

Algorithms ..

Kenneth Messa, Matthew Lybanon

123

137

151

159

Knowledge Engineering

The Use of Artificial Intelligence Techniques to Improve the Multiple

Payload Integration Process ...

Dannie E. Cutts, Brian K. Widgren

Knowledge-Based Approach for Generating Target System Specifications
From a Domain Model ...

Hassan Gomaa, Larry Kerschberg, Vijayan Sugumaran

Combining Factual and Heuristic Knowledge in Knowledge
Acquisition ...

Fernando Gomez, Richard Hull, Clark Karr, Bruce Hosken, William

Verhagen

169

181

195

Information Management

A Spatial Data Handling System for Retrieval of Images by Unrestricted
Regions of User Interest ... 213

Erik Dorfman, Robert F. Cromp

Data Exploration Systems for Databases ... 231

Richard J. Greene, Christopher Hield

Logic Programming and Metadata Specifications 245

Antonio M. Lopez, Jr., Marguerite E. Saacks

°°°
VIII

Planning and Scheduling

N9 2- 23
Artificial Intelligence Approach to Planning the RobOtic

Assembly of Large Tetrahedral Truss Structures*

Luiz S. Homem-de-Mello

Jet Propulsion Laboratory

California Institute of Technology

Pasadena CA 91109-8099

i,]

Abstract

This paper presents an assembly ,sequence planner fi)r
tetrahedral truss structures. To overcome the difficulties

due to the large number of parts, the planner exploits the

simplicity and uniformity of the shapes of the parts and

the regularity of their interconnection. The planning au-

tomation is based on the computational formalism known

as production system. The global database consists of an

hexagonal grid representation of the truss structure. This

representation capture_s the regularity of tetrahedral truss

structures and their multiple hierarchies. It maps into

quadratic grids and can be implemented in a computer by

using a two dimensional array data structure. By main-

taining the multiple hierarchies explicitly in the model,

the choice of a particular hierarchy is only made when

needed, thus allowing a more informed decision, lhuther-

more, testing the preconditions of the production rules is

simple because the patterned way in which the struts arc.

interconnected is incorporated into the topology of the

hexagonal grid. A directed graph representation of as-

sembly sequences allows the use of both graph search and

backtracking control strategies.

1 Introduction

Figure 1 shows a tetrahedral truss structure similar

to those that will be used in future space missions

[13]. The assembly, disassembly or repair of these

large truss structures requires careful planning in or-

der to guarantee that the parts are assembled, or dis-

assembled, in a correct and efficient sequence. This

planning is needed regardless of whether the assen_bly

is executed by humans or by robots.

Because of the size and complexity of these truss

structures, even trained humans may fail to detect

dead-end sequences until a lot of work has been done

and it is found that the overall assembly cannot be

completed. In the case of a repair in which a faulty

strut is to be replaced, an ill-planned disassembly

"This research was conducted at the Jet Propulsion Labo-
ratory, California Institute of Technology, under contract with

the National Aeronautics and Space Administration.

sequence may lead to an irreparable collapse of the
whole truss structure.

In addition to the difliculty humans haw_ in guar-

anteeing correctness in the planning l)r()(:e._, they ()f-

ten fail to notice which l)Cxnsit)ilities for the sequences

are the m(x_t efficient. This difficulty ix further ag-

gravated by constant changes in the n|easure of the

efficiency of the a.sscmbly sequence, lg)r example, the

efficiency inay t)e measured I)y the total time it takes

to COml)h.'te tim assemt)ly in one case, and by thc total

energy in anotiler ca.sc.

Moreover, humans typically are sl(_w in generat-

ing a.s.sembly sequcnccs. TImrc arc many situations

in which the sequcncc planning must also I)e CXl)e-

ditious. Sl)eed in sequence, gcnerati(m is particularly

iml)ortant in the (:asc of a repair in which a faulty

strut is to be rel)laced. It is virtually iml)ossible

to l)replan for every c()nccivat)h_ repair lhat may be

needed. Speed in se(luence generaticm is also impor-

tant in the (te_sign of thc truss structures t)ecausc it

allows the difficulty (if asscnit)ly to lie considered in

the design l)rocess. A designer may also waHl to take

into accom_t the ditliculty of rel)airing different struc-
tures.

Therefore, there is a need It) systematize' and to

computerize tile generation of the ('<_rrect _Lssembly,

disassembly, and repair sequences, as well as the s_-

lection of the best solution. Systematizati()n is needc(l

in order to gtlaralfl, ce that the scqu(,r_c¢_s g(!II(q'al(!d

arc c()rrect and effi('ient. (?()nq)utc'rizati(m is nee(l(',l

in order to enable the f_Lst g(_ncrati()n of ass('mbly se

quences. In the case of r()t)(_ti(: assenLbly and tel)air,

the software for l)lamLing a_cnd_ly, disassendd.v, and

repair sequcnces wilt augment the array of Iun(qJ()ns

that robots are able to l)erfl)rnl autotlom()utsly.

Most previous work on _Lssembly planning fi)cus(yd

on cleetron]cctmni(:al and (:l(_(:tr, mic (l(_vi(_(,s I(i]. '['Iris

l)al)cr l)rcscnts an a,'4_(ylll})].y s(,(lll(,n(!c])]alll|(q for
tetra}ledral truss s|ruct:llrCS. 'l'_ ()V('I'(!(}IlI(' Ill(' (li[li-

(:ll]ties dllc to the lalg(' DiiDlt)_q" _f l);J.rl.'-;, fJJ{' l)l;tmJcr

Cxl)loits th(. _sinq)licity and unif()rxnity t_f lib(' shai)('s of

the parts anti th+_ regularity <_f tl_erir inl(,r('+ml++,cli+m.

Tile l)lanning attlJ)lualicm is t)as(,d _li Ilw ('()llll)Uta-

tiona/ fc_z'rmt/ism klloWll as l)rOd_wtmrt sy_/e.ttt. 'I'll<,

3

PI:_-CEDI_G PAGE BLAt,_K _IT FILMED

,. .'__ ____,. .L____ ____'. ..

/ : 'x / : \ / : x

Ymo_ ba '_

e n_ion bose

Figure 2: Robotic assembly facility at tile NASA Lan-
gley Research Center.

Figure 1: Tetrahedral truss structure.

global database consists of all hexagonal grid repre-
sentation of the truss structure. This representation
captures the regularity of tetrahedral truss structures
and their multiple hierarchies. It maps into quadratic
grids and can be implemented in a computer by using
a two dimensional array data structure. By maintain-
ing the multiple hierarchies explicitly in tile model,
the choice of a particular hierarchy is only made when
needed, thus allowing a more informed decision. Fur-
thcrmorc, testing tile preconditions of the production
rules is simple because the l)atterned way, in which
the struts are interconnected is incorporated into the

topology of the hexagonal grid. A directed graph rep-
resentation of assembly sequences allows the use of
both gral)h search and backtracking control strafe-
Des.

2 Scenario

A truss structure is a composition of struts intercon-
nected at nodes and forming a stable and rigid unit.
All struts are identical, and so are all nodes. The
struts are attached to the nodes through joint con-

nectors. A strut si is said to belong to a node nj if
one of s_'s ends is attached to nj. Similarly, node nj
is said to belong to strut s_.

In this paper, thc robotic assembly facility of the

NASA Langley Research Ccnter [12, 13, 15] will be
used as the reference scenario. Figure 2 shows that
facility in schematic form. The robot arm is mounted

on a base that is mounted on a carriage that can
translate along one direction. The base where the
robot is mounted can translate along a direction or-
thogonal to the carriage translations. These two too-

tions allow the positioning of the robot arm in a
Cartesian coordinate system. The truss structure is
mounted on a base that can rotate. If necessary, be-
fore a strut is assembled, the structure is turned and
both the base of the robot arm and the carriage are
translated.

The assembly process consists of a succession of
tasks, each of which is tile addition of one strut. The
nodes are preattached to their first strut to be as-
sembled. Whenever a strut is added, it is attached
to its two nodes, except when the nodes have been
preattached. The process starts with all struts stored
in pallets that are stacked on the same base where
the robot arm is mounted. The assembly process
ends with all struts properly joined to form the whole
structure. Ideally, after struts have been added, they

are not removed until the end of the assembly process.

An a_ssembly task is said to be feasible if there is a
collision-free path to bring tile strut to its position in
tim structure from a situation in which it is far apart,
and if it is possible to lock the joints that attach the
strut to its nodes. Of course, the path should also
avoid collisions between the robot arm or the carriage
and the truss structure.

It is desired to create a computer system that will
generate a sequence of assembly tasks for any given
tetrahedral truss structure. Of course, the input to
tlfis system includes a description of the desired struc-
ture. In addition to containing only feasible tasks
and achieving the assembly of the whole structure,

the sequence produced should minimize a given cost
function. Although the definition of the cost func-
tions is part of the problem, it will probably include
a weighed combination of reliability, safety, energy
and total assembly time.

3 Background on assembly

sequence planning

Most previous work on assembly sequence planning
[2, 3, 4, 5] focused on electromechanical and electronic
devices such as gearboxes, alternators and disk drives.
The difficulty in planning the assembly sequence for
those products stems, in some degree, from the va-
riety of part shapes and from the lack of regularity
in the way the pieces are interconnected. To over-

come this difficulty, previous approaches used elab-
orate representations of mechanical assemblies and
complex geometric and symbolic reasoning techniques
[1, 4, 161.

Another difficulty in the automation of assembly
sequence planning for electromechanical and elec-
tronic devices comes from the fast growth in the re-
quired computation with the increase in the number
of parts. Previous approaches have overcome this
problem by clustering components into subassemblies
I8], tbereby artificially reducing the number of parts.
Many large products have natural subassemblies that
arise as a result of modular design as well as of man-
ufacturing advantages. Clustering components into
subassemblies sacrifices completeness since sequences
that interleave the assembly of parts of different sub-
assemblies can not be generated. But for most large
products this loss of completeness is not a serious lim-
itation because those natural subassemblies are as-

sembled independently anyway. In practice, a hierar-

chical model of the assembly [14] is used to implement
the clustering of parts. At the highest level, each sub-
assembly is treated as a part.

There has been substantial progress in assembly
planning in recent years, and several new approaches

and techniques have been reported[6]. Nevertheless,
because of the complexity of the reasoning involved
and the large size of the solution space, it is still im-
practicable to use existing planners to generate an
assembly sequence for assemblies containing a large
number of parts, such as the structure shown in Fig-
ure 1, which is made of 102 struts.

One way to reduce the computation, when plan-
ning the assembly of tetrahedral truss structures, is
to cluster the struts into subassemblies as in the case
of electromechanical and electronic devices. A truss

structure such as the one shown in Figure 1 can be
viewed as the composition of tetrahedral and pen-
tahedral units, much like a solid that has a com-
plex shape can be treated as the composition of sim-
ple solids that have faces in contact, one against the
other. Two adjacent units share the struts and nodes
of their "contacting" faces. For example, the small
truss structure shown in Figure 3a can be regarded as
the composition of the two pentahedral units shown
in Figure 3b. Those two pentahedrons have one face
"in contact" and they share the struts and nodes of
that face. Similarly, the structure shown in Figure

12 12

8_4 8 4

10, 2

8_14

(b)

Figure 3: A small truss structure and its subdivision

inr.o two pentahedral units.

1 can be viewed as a composition of tetrahedral and
pentahedral units with faces "in contact."

Since in practice it is preferred to finish the as-
sembly of one unit before beginning the assembly of
another [ll], seeing the structure as a composition
of units should not be a problem in the assembly se-
quence planning. Furthermore, this approach should
reduce the computation required to create the assem-
bly sequence. Mathur and Sanderson [9] describe a hi-
erarchical planner for truss structures. For the struc-
ture shown in Figure 1, for example, using this ap-
proach corresponds to reducing the number of parts
from 102, which is the number of struts, to 37, which
is the number of units.

The use of a hierarchical approach for planning the
assembly requires that the tetrahedral truss structure
be subdivided into pentahedral and tetrahedral units.
But there are several ways to cluster the struts into
those kinds of unit. For example, in addition to the
subdivision shown in Figure 3b, there are two other
ways in which the small truss structure shown in Fig-
ure 3a can be subdivided into two pentahedral units,
and these are shown in Figure 4. Unlike the elec-
tromechanical and electronic devices studied previ-
ously, in the case of truss structures, there is no man-
ufacturing advantage in choosing one subdivision over
the others. Instead of having one natural hierarchy
of the parts, tetrahedral truss structures have several
hierarchical models, none of which is "more natural"
than the others. When the small structure shown in

Figure 3 is part of a large structure (e.g. Figure 1),
unless the best assembly sequence is known in ad-
vance, choosing one of its subdivisions to create a
hierarchical model will likely preclude the generation
of the best assembly sequence. Therefore, it is impor-
tant that the representation of the problem captures
the multiple hierarchies that occur in a tetrahedral

5

12 12

6 6
(a)

12 12

6 6

(b)

Figure 4: Two additional subdivisions of the small

truss structure (Figure 3a) into two pentahedral
units.

truss structure.

A second way to reduce the computation, when
planning the assembly of tetrahedra] truss structures,
is to take advantage of the simplicity and uniformity
of the shapes of the parts and the regularity of their
interconnection. Unlike the electromechanical and

electronic devices studied previously, the tetrahedral
truss structures are made of struts, all of which have
the same cylindrical shape. Moreover, those struts
are interconnected in a regular fashion. Because the
parts have the same shape and are interconnected in
a patterned way, the model of a truss structure can
incorporate the geometry of the set of parts in a more
explicit way than the models used for electromechan-
ical and electronic devices.

The models of assemblies that have been used in

previous work describe the shapes of all parts and
the geometric and mechanical relationships between
parts. Typically, assembly models can be associated
with graphs in which the vertices correspond to the
parts and the edges to the geometric relationships
between parts [14]. The topology of the graph corre-
sponds to the topology of the parts in the assembly.
But there is no relation between the geometry of the
set of parts in the assembly and the topology of the
graph. Figure 5 shows three simple assemblies made
up of the same set of parts. Those assemblies are as-
sociated with the same graph, also shown in Figure 5,
since the topology of the parts is the same. But the

L._._

I
[----- c I BI

® © ®

Figure 5: Three assemblies with different geometry

but same topology.

geometry of the parts in each assembly is very differ-
ent from the geometry of the parts in the others.

The next section presents an assembly planner that
uses a multihierarchical representation for the truss
structures and that takes advantage of the simplicity
and uniformity of the shapes of the parts and the
regularity of their interconnection.

4 Planning the assembly of

tetrahedral truss structures

The computational formalism known as production

system [10] has been used for the automatic genera-
tion of assembly sequences for tetrahedral truss struc-
tures. There are three major elements in a production
system: the global database, the set of production
rules, and the control scheme. This section describes

these three elements. Subsection 4.1 presents a multi-
hierarchical representation of tetrahedral truss struc-
tures that constitutes the global database; subsection
4.2 discusses the control scheme; and subsection 4.3
introduces the production rules that act on the global
database.

4.1 A multihierarchical

representation of tetrahedral
truss structures

It was mentioned in section 3 that, unlike the elec-
tromechanical and electronic devices studied previ-
ously, the tetrahedral truss structures are made of
simple struts all of which have the same shape. In ad-
dition, the struts are interconnected in a very regular

Figure6:AsubsetofthestructureshowninFigure1.

fashion.Themethodforplanningassemblysequences
of tetrahedraltrussstructurescantakeadvantageof
thesefactsto reducethecomputationneededto gen-
erateassemblysequences.

Therepresentationto beintroducednextisbased
on viewingtetrahedronsand octahedronsas the
buildingblocksof a tetrahedraltrussstructure.A
pentahedronwillbeconsideredtobeabuildingblock
onlywhenit is not embeddedin anyoctahedron1.
Figure6showsa subsetof thestructuredepictedin
Figure1,andFigure7showsits buildingblocks.

Asdiscussedabove,therearesixembeddedpenta-
hedronsin anoctahedron.Thenodesof theoctahe-
dronshowninFigure3ahavebeennumberedbyanal-
ogywith thenumbersin aclockface.Theembedded
pentahedronsaredesignatedby the numberof the
vertexcorrespondingto their apex.Therefore,the
pentahedronsshownin Figure3barereferredto as
P12(top)andP6(bottom);thepentahedronsshown
inFigure4aarereferredto asP8(left)andP2(right);
andthepentahedronsshowninFigure4barereferred
to asP10(left)andP4(right).

Figure3ashowsacoordinateframeassociatedwith
anoctahedron.Thex-y plane contains nodes 2, 6,
and 10. The z axis points out of the figure 2. The
octahedrons in a truss structure are all parallel to

each other. Therefore, the transformation between
the coordinate frames of two octahedrons is a pure
translation.

Some tetrahedrons have three nodes on the top
plane and one node on the bottom plane. These are
referred to as tetraheclron-down because they can be

viewed as a pyramid pointing down. The other tetra-
hedrons, which have three nodes on the bottom plane

1pentahedrons not contained in any octahedron occur at

the periphery of a structure. See Figure 8.

aNodes 4, 8, and 12 have positive z coordinate.

Figure 7: The building blocks of the structure shown

in Figure 6.

and one node on the top plane, are referred to as

tetrahedron-up. All tetrahedrons-up in a truss struc-
ture are parallel to each other, and all tetrahedrons-
down are parallel to each other. Therefore, the
transformation between the coordinate frames of two

tetrahedrons-up (or two tetrahedrons-down) is a pure
translation.

A tetrahedral truss structure can be represented by
a graph in which the vertices correspond to volumet-
ric units, and the edges correspond to "face-contacts"
between adjacent units. Figure 8 shows a graph rep-
resentation for the 102-strut truss structure shown in

Figure 1.
The geometry of this graph parallels that of the

truss structure. Because of the regularity of the struc-

ture, its graph representation constitutes an hexag-
onal grid. In addition, the hexagonal grid can be
mapped into a rectangular grid as shown in Figure
8, where the lines and columns are labeled with their
indices. Furthermore, a coordinate frame can be as-

sociated with the graph shown in Figure 8: the x axis
points down, and the y axis points right.

There are three types of vertices, represented, re-
spectively, by hexagons, triangles, and half-hexagons.
Hexagon vertices correspond to octahedrons like the
one shown in Figure 3a. Triangles correspond to
tetrahedrons; triangles pointing down in the figure
correspond to tetrahedrons-down, and triangles point-
ing up correspond to tetrahedrons-up.

Unlike regular graphs, in this representation the

position and the orientation of the vertices are im-
portant. A coordinate frame is aasociated with the

7

Figure 8: Graph representation for a tetrahedral truss

structure with 102 struts and its mapl)ing into a rect-

angular grid.

"_-. i. _11 "''_+_'"

Figure 10: The mapping of the graph representation
of tetrahedrai truss structures into a quadratic (not

rectangular) grid.

r f 1 r • 1

Z)' _ ' 5 '{7 , r,
I i

...

(a) (b) (c) ({l) (e) (f)

Figure 9: The six (}rientati(ms in which half-hexag(}ns

may occur: (a) I}2; (t}) I),l; (c) I)6; (d) I)8; (e) P10;

(f) Pi2.

graph. Its axes are l)arallel to those of the flames
as._ociated with the (}ctahe(h'(}ns. Each vertex is ori-

ented as its unit's l)arallcl t)r(}jection (}n the b{}ttom
i)hme of the structure

The half-hexagons corresl)ond t{} i)entahedrons
such a._ those shown ill Figures 3b, ,la, and 4b. The
half-hexagons are used only when there is no octa-
he{Iron that includes the corresponding pentahedron.
Since there are six l)entahedrons enfl}edded in each
octahe{lron, there are six <}ri(mtations in which the
half-hexagons may occur, and they are shown in Fig-
ure 9.

The edges in tile graph representation of a truss
sl,ructure correspond to those "faces" that are com-
mon to two a(tjaccnt volumetric units, that is, those
sets of three struts that "l}elong" to both volumetric
units.

The real)ping of the graph reprcscntation into a
rectangular grid gives rise t(} a data-structure for a
computer implcmcntation: a two-dimcnsional array
in which each element may contain information about
one building block of tile truss structure. Thc indices

of the array element indicate the position of the build-
ing [)lock.

The edges in tile graph shown in Figure 8 are
only implicitly encoded into the two-dimensional ar-
ray data structure. In addition, the contacts between
units that share only one strut, or only one node, are
also implicitly encoded into the array. For example,
a tetrahedron-up at cell (i , j) (i.e. line i, column
j) shares one strut with tile tetrahedron-down at cell
(i I 2 , j), another strut with the tetrahedron-down
at cell (i- I , j- l), and another strut with the
tetrahedron-down at cell (i - 1 , j t 1). As another
example, an octahedron at cell (i , j) shares one node
with tile tctrahedron at cell (i + 2 , j - 2).

It should be pointed out that Figure 8 shows one
mapping from the graph representation of tetrahe-
(lral truss structure, which is an hexagonal grid, into
a rectangular grid. That mapping is probably the
most direct, but it leaves a number of empty ceils. In
a computer implementation, if the available storage
space is scarce, it is straightforward to devise other
mappings from the hexagonal grid into a quadratic
grid, which may not be rectangular. Figure 10 shows
another mapping from the graph representation of
truss structures into a quadratic grid. Unlike the one
shown in Figure 8, the mapping shown in Figure l0

does not leave empty cells.

As it will become clear in tile following subsections,
this graph representation of truss structures allows an
assembly planner to exploit the regularity in which
the parts are joined to improve its planning efficiency.
This improvement is due, in part, to the encoding of
tile geometry of the truss structure in the topology of

_ _ _'_ s. a_

/

\

\

i i
| i

i i

i i
i

, _ |

/

r

ii ii

i !

ii ii

/

Figure 11: A portion of the directed graph of as-

sembly sequences, which is also shown in Figure 12.

The vertices have been labeled by the top view of the
partial truss structure at each state of the assembly

process.

Figure 12: A portion of the directed graph of assem-

bly sequences, which is also shown in Figure 11. The

vertices have been labeled by the graph representa-

tion of the partial truss structure at each state of the

assembly process.

the graph. Moreover, the graph representation also
allows the planner to take advantage of the multiple
hierarchies that exist in tetrahedral truss structures.

The decision of which hierarchy to choose does not
have to be made until it is needed. Being able to delay
the selection of the hierarchy, the planner will have
more information available to decide which hierarchy
is more advantageous, and therefore will be able to
make a better choice.

4.2 Control strategy

Several methodologies for representing assembly se-
quences have been utilized [7], including representa-
tions based on directed graphs and AND/OR graphs.

As mentioned in section 4, it is preferred to com-
plete the assembly of a tetrahedral or pentahedral
unit before beginning the assembly of another unit
[11]. Therefore, the assembly task can be redefined
as the assembly of one tetrahedron or one pentahe-
dron. In this definition, each assembly task consists
of a sequence of subtasks, each being the assembly of
one strut.

Since each assembly task is the addition of exactly
one volumetric unit, both the directed graph and the
AND/OR graph will have the same size. The directed
graph representation has been used in this work be-

cause it is simpler and easier to understand and im-
plement. The vertices in this directed graph corre-
spond to the states of the assembly process that can
be characterized by the description of the substruc-
ture already a_embled. The edges in this directed
graph represent the assembly tasks, each correspond-
ing to the addition of one volumetric unit.

Figures 11 and 12 show a portion of the directed
graph of assembly sequences. In Figure 11 the ver-
tices have been labeled by the top view of the partial
truss structure at each state of the assembly process.
This labeling is better for displaying the assembly se-
quences for humans. In Figure 12 the vertices have
been labeled by the graph representation of the par-
tial truss structure at each state of the assembly pro-
cess. This labeling reflects more closely the computer
internal representation of the assembly sequences. In
both Figures, the vertex at the top corresponds to a
state in which one octahedron and two tetrahedrons

are already assembled. The two vertices in the middle
corresponds to states in which an additional penta-
hedron is already assembled. In the left vertex, the
additional pentahedron is P10, and in the right ver-
tex, the additional pentahedron is P8. The vertex at
the bottom corresponds to a state in which two octa-
hedrons and two tetrahedrons are already assembled.

Figure 12 also illustrates the advantage of using the

9

multihierarchical representation of tetrahedral truss
structures introduced in section 4.1. Because the

building blocks are tetrahedrons and octahedrons, it
is possible to generate sequences that use different
sets of pentahedrons as assembly tasks. As pointed
out above, the additional pentahedron in the left mid-
dle vertex is not the same as the one in the right
middle vertex. By using the representation in Figure
8, the three possibilities in which an octahedron can
be subdivided can be considered. In the scenario de-

scribed in section 2, the two possibilities correspond-
ing to the subdivision of the right octahedron into
P6 and P12 are not considered valid. If the structure

had been viewed as a composition of pentahedrons
and tetrahedrons, only one alternative would be con-
sidered.

Each assembly sequence corresponds to a path in
the directed graph of assembly sequences, starting in
the vertex that has no label (i.e., no strut has been
assembled) and ending in the vertex that is labeled
by the whole truss structure. By construction, the
directed graph of assembly sequences has no cycle.
A measure that reflects the quality of an assembly
sequence can be computed by assigning costs to the
vertices (i.e., the states of the assembly process) and
to the edges (i.e., the assembly tasks). The cost of a
path p can be defined recursively as:

f Cs(sp) if the path has only one node
cost(p) l Cs(sp) + CT(tp) + cost(rp) otherwise

where sp is the initial vertex (state) of p, tp is the
initial edge (task) of p, and rp is the tail of p, that is,
what is left ofp after sp and tp are removed. The func-
tion Cx gives an assessment of the quality of a state
of the assembly process. Better (e.g., more stable)
states correspond to smaller values of Cs. The func-

tion CT gives an assessment of the quality of a task
in the assembly process. Better (e.g., less complex
or less time consuming) tasks correspond to smaller
values of Cs.

The directed graph representation of assembly se-

quences and its associated cost function allow both
backtracking and graph search control regimes [10] to
be implemented. The construction of the assembly se-
quence can proceed in backward or forward fashion.
The former is easier to understand while the latter

may be more efficient, since it avoids dead-end states.
Subsection 4.4 describes the current implementation.

4.3 Production rules

The global database introduced in subsection 4.1 re-
flects the state of the truss structure at each point
of the assembly process. The production rules that
are introduced in this subsection contain the condi-

tions for the execution of an assembly task and the
changes that occur in the state of the truss structure
when that task is executed. In the operation of the

• Precondition:

1. Cell (i,j) currently contains a pentahedron
Pk.

2. Goal is one octahedron in cell (i, j).

3. Any cell (x,y) for which L(x,y,i,j,k) > 0

is empty where L(x,y, i,j,k) -- _(k) • x +

_(k). _ + _(i, j, k).

• Effect:

1. Adjust the angle of the truss structure and

the x-y position of the robot arm acording

to the position of cell (i,j).

2. Install pentahedron Pk' in cell (i,j) where

k' = rem(6 + k, 12).

Figure 13: Production rule example. See Table 1.

planning system, whenever a production rule is ap-
plied, the global database must be updated to reflect
the changes in the state of the truss structure.

The simplest way to introduce the production rules
is by an example. Figure 13 shows one production
rule. It corresponds to the assembly task that fin-
ishes up one octahedron, starting with one of its
pentrahedron halves already assembled. If the pen-
tahedron already assembled is Pk, the pentahedron
that will complete the octahedron is Pk' where k' =

rem(6 + k, 12).

The first two preconditions simply verify that the
goal is an octahedron in a cell (i,j) that currently
has a pentahedron. The third precondition verifies
that no collision will occur between the truss struc-

ture and the carriage where the base of the robot is
mounted. It requires that all cells on the side of the

line L(x, y, i, j, k) = 0 where Pk' is must be empty.
Figure 14 shows a state in which the preconditions of
the production rule in Figure 13 are satisfied for cell
(7, 5) and k = 10.

The effect of this production rule is the installation
of pentahedron Pk' in cell (i, j). This can be accom-
plished by using a precompiled sequence of subtasks,
each of which is the addition of one strut. Since the

base of the pentahedron is already in place, only four
struts must added. This subsequence of tasks, each
of which includes the motions of the robot arm, is in-

dependent of the position of the cell (i,j). Of course,
the positions of the carriage and of the base, as well
as the angle of the structure, must be adjusted ac-
cording to the position of cell (i,j).

For each possible geometric configuration that a
cell can take, there is a production rule similar to the

10

Table1: Coefficients of L(x,y, i,j, k) in the produc-

tion rule example shown in Figure 13.

-y(i,j, k)

2 -1 -3 (i + 3j)

4 1 -3 (3j - i)

6 1 0 -i

8 1 3 -(i + 3j)

10 -1 3 (3j - i)

12 -1 0 i

one in Figure 13. Since there are only a few geometric
configurations, the total number of production rule._
is small.

4.4 Current implementation

The current implementation is an interactive produc-
tion system that uses a backtracking control scheme.
The assembly sequences are generated in a forward
fashion. The first unit to be assembled is given.

At each step, a menu containing all the subunits
that can be assembled next is displayed for the user.
These options are obtained by testing the precondi-
tions of the production rules. The alternatives in the

menu are ranked according to the system's preference
criterion. The user may accept the system's choice for
the next subunit or may select another among those
that are feasible. A graphical display of the truss
structure allows the user to visualize the available op-
tions. At any point, the user can force the system to
backtrack and to "undo" one or more assembly tasks.

This interactive production system exploits the
strengths of humans and computers. Computers are
better at guaranteeing that the sequence is correct
and that no option is overlooked. Humans are better

at assessing the quality of an assembly sequence.
The cost function that is used is a function of the

translation of the carriage, the translation of the base,
and the rotation of the structure. The shorter those
motions, the lower the cost function. The task for

which the cost function is minimal has the highest
preference. Other cost functions are being investi-
gated, and one of the goals of this project is to find
good cost functions and their corresponding heuristic
estimations.

r , [i •

I I * I

....... r- -T o--T

,10 ' ' " '
I i ° i
i i I

J / °
19 i I • I

• 8 "1 ,
I i

i ,

,7 : '
i

I I

il '-- I 1; i I t
I ° I I t

"1 I i

• I I I
• i i i

L - --L--L _ J
I I I

II4 I t I I

I I I I I

it. ___k I L Z J

:3 : , :. : ; ,
J

i I I

12 I i * i i i i
• I I • I i I I

, ,_...... L___.'__L ,L.... L...... _...... J,,- __ p

I] I I o I I i t i

i- i .3 I i I I IL--J---L_.-2___L L__-4___L___5___±__fl___I___7 __.*

Figure 14: A state in which the preconditions of the

production rule in Figure 13 are satisfied fi)r cell (7, 5)
and k = 10.

In each assembly task, a number of struts are as-

sembled. For example, in the tasks corresponding
to the effect of the production rule shown in Figure
13, four struts are assembled. By properly position-
ing the carriage and the base of the robot, the arm
motions to install a given strut is the same regard-
less of the position of the octahedron that is being
completed. In the current implementation, these mo-
tions were taught. Each production rule is associated

with the paths to install the struts of its correspond-
ing subunit. Therefore, the output of the planning
system includes, for each strut, the positions of the
carriage and the base of the robot, the angle of the
trus_ structure, and the specific arm motion to be
used.

5 Conclusion

This paper brought about a clear understanding of
the regularity of the tetrahedral trus.s structures and
their multiple hierarchies. Unlike electronlechanical
and electronic devices, tetrahcdral truss structures

can t)e represented by a graph whose tol)ology corre-
sponds to the geometry of the parts. This representa-
tion captures the regularity of the tru_s structure as
well as all its hierarchies. It consists of an hexagonal
grid that can be nmpped into a tw()-dimensional ar-
ray data structure. The relationshit)s between units
are implicitly encoded by the indexes ()f their corre
sponding cells in the array.

Using this representation and its ms.sociatcd data
structure, a simple rea.soning is sufficient t() decide

11

whether or not a candidate assembly task is feasible.

Furthermore, the choice between hierarchies can be

made as the plan is generated, thus allowing a better

selection than if the choice were made in advance.

A prototype planning system that uses the produc-

tion system paradigm has been implemented. The

global database is the hexagonal grid representation

of tetrahedral truss structures. There is one produc-

tion rule for each possible configuration that a cell can

take. Since there are only a few geometric configura-

tions the total number of production rules is small. A

directed graph representation of assembly sequences

allows the use of both graph search and backtracking

control strategies. The prototype uses a backtracking

scheme.

This current implementation is interactive and ex-

ploits the strengths of humans and computers. Com-

puters are better at guaranteeing that the sequence

is correct and that no option is overlooked. Humans

are better at assessing the quality of an assembly se-

quence. For the structure shown in Figure l, the

system generated an assembly sequence that signifi-

cantly reduces the amount of rotation when compared

to a sequence generated by hand. F_ature work will fo-
cus on cost functions and heuristic evaluations aimed

at making the system fully autonomous.

Acknowledgments

The author would like to thank R. S. Desai for

support of this research, and M. D. Rhodes and

R. W. Will for valuable feedback on the planning sys-

tem and for kindly providing Figure 2.

References

{I] D. F. Baldwin. Algorithmic Methods and Software

Tools for the Generation of Mechanical Assembly Se-

quences. Master of science thesis, Department of

Mechanical Engineering, Massachusetts Institute of

Technology, February 1990. Also published as re-

port CSDL-T-1040, The Charles Stark Draper Lab-

oratory.

[2] A. Bourjault. Contribution a une Approche M_-

thodologique de L'Assemblage Automatisd: Elabora-

tion Automatique des Sdquences Opdratoires. Th_se

d'6tat, Universit6 de Franche-Comt6, Besanqon,

France, November 1984.

[3] T. L. De Fazio and D. E. Whitney. Simplified Gener-

ation of All Mechanical Assembly Sequences. IEEE

Journal of Robotics and Automation, RA-3(6):640-

658, December 1987. Corrections ibid RA-4(6):705-

708, December 1988.

[4] J. M. Henrioud. Contribution a la Conceptualisation

de l'Assemblage Automatisd: NouveUe Approche en

rue de Ddtermination des Proccssus d'Assemblage.

Th_se d'6tat, Universit6 de Franche-Comt6, Be-

sanqon, France, December 1989.

[5] L. S. tIomem de Mello. Task Sequence Planning for

Robotic Assembly. PhD thesis, Carnegie Mellon Uni-

versity, May 1989.

[6] L.S. Homem de Mello and S. Lee, editors. Computer-

Aided Mechanical Assembly Planning. Kluwer Aca-

demic Publishers, 1991.

IT1 L. S. Homem de Mello and A. C. Sanderson. Repre-

sentations of Mechanical Assembly Sequences. IEEE

Transactions on Robotics and Automation, 7(2):211-

227, April 1991.

[8[S. Lee and Y. G. Shin. Assembly Planning

Based on Subassembly Extraction. In Proc. IEEE

Int. Conf. on Robotics and Automation. IEEE Com-

puter Society Press, May 1990.

[9] R. K. Mathur and A. C. Sanderson. A Hierarchi-

cal Planner for Space Truss Assembly. Cooperative

Intelligent Robotics in Space, Rui J. deFigueiredo,

William E. Stoney, Editors, Proc. SPIE 1387, 47-57,

1991.

[10] N. J. Nilsson. Principles of Artificial Intelligence.

Tioga, 1980.

Ill] M. D. Rhodes. Guidelines for Development of Truss

Assembly Scenario. Unpublished technical notes,

March 1990.

[12] M. D. Rhodes and R. W. Will. Automated Assembly

of Large Space Structures. In 4Ist Int. Astronautical

Congress, October 1990.

[13] M. D. Rhodes, R. W. Will, and M. A. Wise. A Teler-

obotic System for Automated Assembly of Large

Space Structures. NASA Technical Memorandum

101518, Langley Research Center, Hampton, VA,

March 1989.

114] S. Srikanth and J. U. 2Mrner. Toward a Unified Rep-

resentation of Mechanical Assemblies. Engineering

with Computers, 6:103-112, 1990.

[15] R. W. Will and M. D. Rhodes. An Automated

Assembly System for Large Space Structures. Co-

operative Intelligent Robotics in Space, Rui J. de-

Figueiredo, William E. Stoney, Editors, Proc. SPIE

1387, 60-71, 1991.

[16] R. Wilson and J. F. Rit. Maintaining Geometric De-

pendencies in an Assembly Planner. In Proc. IEEE

Int. Conf. on Robotics and Automation, pages 890-

895. IEEE Computer Society Press, May 1990.

12

- , • 2

N9 2- 23"3 8

SLS-PLAN-IT: A Knowledge-Based Blackboard Scheduling System/_/_j-ij
for Spacelab Life Sciences Missions

Cheng-Yan Kao (+)

Dept. of Computer Science

& Information Engineering

National Taiwan University

Taipei, Taiwan 107

Tel: 886-2-363-0231 ext. 3231

Fax: 886-2-362-8167

Seok-Hua Lee (*)
GE Government Services

General Electric Corporation

1050 Bay Area Blvd

Houston, TX 77058, USA

J,
Tel: (713) 488-9005 _ r '?
Fax: (713) 488-1092 "_ _6 C

- f_ 6_

l

The Mission Integration Office (MIO) of GE Government

Services was responsible for generating and updating the crew

activity plan and resource assignments for the Spacelab Life

Science SLS-I mission for NASA. The nine-day SLS-I shuttle

mission was launched on June 5, 1991.

The Spacelab mission planning was an overconstrained domain.

There were over fifty resources and several hundred activities

with several thousand steps to be scheduled in the SLS-I mission.

This is an NP-hard problem. The primary scheduling tool in use

during the SLS-I planning phase was the operations research (OR)

based, tabular form Experiment Scheduling System (ESS) developed

by Marshall Space Flight Center (MSFC).

PLAN-IT is an artificial intelligence (AI) based interactive

graphic timeline editor for ESS developed by Jet Propulsion

Laboratory (JPL). We have enhanced the PLAN-IT software for use

in the scheduling of Spacelab experiments to support the Spacelab

Life Science missions. The enhanced software SLS-PLAN-IT System

was used to support the real time reactive scheduling task during
the SLS-I mission. This software will be further enhanced before

the SLS-2 mission and is expected to completely replace the ESS

currently in use in MIO in the SLS-3 time frame.

SLS-PLAN-IT is a frame-based blackboard scheduling shell

which, from scheduling input, creates resource-requiring event-

duration-objects and resource-usage-duration-objects. The

blackboard structure is to keep track of the effects of event-

duration-objects on the resource-usage-duration-objects. The

constraints are propagated automatically for conflict resolution.

Various scheduling heuristics are coded in procedural form and

can be invoked any time at the user's request. The timeline

entries can be manipulated by the mouse to support the scheduling

task. This paper describes the system architecture and what we

have learned with the SLS-PLAN-IT project.

(+)

(*)

The first author was involved in this project when he was an

employee of GE Government Services, Houston, Texas.

All correspondence should be sent to the second author.

13

Introduction_

The Mission Integration Office (MIO) of GE Government

Services was responsible for generating and updating the crew

activity plan and resource assignments for the Spacelab Life

Science SLS-I mission for NASA. The nine-day SLS-I shuttle

mission was launched on June 5, 1991. The primary scheduling

tool in use during the SLS-I planning phase was the Experiment

Scheduling System (ESS) developed by Marshall Space Flight Center

(MSFC). The ESS software is hosted on a VAX computer. It has

evolved over the past ten years into a FORTRAN program with

i00,000 lines of FORTRAN code. However, it is very time-consuming

in using ESS to update the crew activity timeline for the SLS

missions. A joint effort between MSFC and Jet Propulsion

Laboratory (JPL) of NASA went on for four years to develop an

AI-based companion interactive graphic timeline editor, called

PLAN-IT (shorthand for Plan-lntegrated Timelines). PLAN-IT is a

frame-based functional timeline manager. The objective was to

enable the timeline engineers to explore scheduling options,

recognize scheduling opportunities and thereby include additional

or better-arranged activity into a schedule. The origin of PLAN-

IT can be traced back to the AI planner DEVISER system of Vere

(Ref. 13). Unfortunately, this joint effort of MSFC and JPL was

terminated in October, 1988, and the PLAN-IT scheduling system
was left unused in MSFC since then. Three main reasons for not

using PLAN-IT were: (i) the integration of PLAN-IT into the ESS

was poor, (2) the response time of PLAN-IT was unacceptable in

certain cases, and (3) the resistance from the ESS developer and

user communities was strong.

MIO of GE Government Services obtained the original PLAN-IT
source code from JPL in 1988. We have enhanced the software for

use in the scheduling of Spacelab experiments to support the

Spacelab Life Science missions. The enhanced software SLS-PLAN-IT

Scheduling System was used to support the real time reactive

scheduling task during the SLS-I mission. This software will be

further enhanced for the SLS-2 mission, and is expected to

completely replace the ESS Flight Planning System (ESS/FPS)

currently in use by the MIO in the SLS-3 time frame. The SLS-

PLAN-IT is currently hosted on the TI Micro-Explorer Lisp machine

and will be ported to the SUN workstation under the Common Lisp

Object System (CLOS) environment.

The project objective of SLS-PLAN-IT is to provide an

intelligent scheduling tool that will allow the timeline

engineers of the Payload Activity Planning team to interactively

update an ESS generated timeline in a way that is time and cost

effective. SLS-PLAN-IT is a decision support tool. Its purpose

is to aid an expert human scheduler not only with effective

graphics and a menu-driven interface, but also with natural

problem presentation.

A vital feature of SLS-PLAN-IT is its resource timelines,

which are similar to timelines normally in use. The timeline

display shows the scheduler the conflicts in a trial sequence so

14

that the sequence can be modified and improved immediately. The
sequence can be modified and the strategy can be directed while a
strategy is running. There are several advantages to this
approach. It allows the user to understand easily what is
happening. The trial sequence is displayed directly on the
screen. As the sequence changes incrementally, the user can
quickly grasp what is happening and interact with the scheduling
process. He can focus on some aspect of scheduling without being
concerned of the other constraints. This feature also makes it
easier for the user to capture expert advice.

There also exist controls that allow the user to focus on a
strategy. For example, the user can disable some of the resource
timelines so that the strategies will only consider a subset of
the resources. After the basic schedule is laid out, additional
resources can be evaluated. Another control approach is to tell
SLS-PLAN-IT to work with certain types of activities or to
consider moving activities within a user-defined window. The
effect of SLS-PLAN-IT's strategies can be reduced by freezing
some activities since only the user can move frozen activities.
One of the more effective control approaches allows the user to
select a single activity to which a strategy can be applied so
that he can ask SLS-PLAN-IT if there is a better place in the
sequence for this activity. This feature provides the scheduler
with a "smart" sequence editor.

The goal of SLS-PLAN-IT is to achieve a blend of human and
machine expertise. SLS-PLAN-IT initially produces preliminary
layouts. After political decisions have been made, they will be
reflected in the schedule. The operator can direct SLS-PLAN-IT
to make minor changes in the sequence, or he can control the
strategies. Finally, the operator can use SLS-PLAN-IT as an
editor to verify that certain constraints have not been violated.

In the following sections, we will first describe the
problem domain, review the relevant literature, then give a
detailed description of the system architecture, report the
current status and enhancement plan of the project, and finally
discuss what we have learned from the project.

The Problem Domain:

Mission planning schedules are composed of three types of

element: activities, resources, and constraints. Activities are

the events in a schedule. They can either have durations (like

experiment steps) or be point events (like a space shuttle

launch). Activities consume, create, or replenish resources.

Activities also have inter-relationships that are often expressed

as precedence relationships or concurrency/non-concurrency of

activities. Resources can be associated with one activity, a

group of activities, or all activities. There are activity-

specific resources, e.g., equipment associated with an

experiment, and pool-resources, e.g., electrical power.

The Spacelab mission planning is an overconstrained domain.

15

In past Spacelab or Skylab missions, low priority experiments
were occasionally bumped to achieve more important goals.
Therefore, the mission planners must be able to relax or even
ignore certain constraints in order to get an acceptable
schedule.

In our timeline engineers' terminology, a performance is an
execution of an experiment, and a step is an activity of an
experiment. The experiments are then modeled by the constraints
of the steps involved and the constraints of the performances.
The constraints imposed for the Spacelab missions can be
categorized into time constraints and resource constraints. The
time constraints include performance time window, maximum and
minimum performance duration, maximum and minimum performance
delay, maximum and minimum step duration, maximum and minimum
step delay, concurrency and non-concurrency of steps, and target
or attitude opportunities. The resource constraints include
equipment, nondepletable resources, depletable resources,
resource carry-through, crew selection, crew lock-in, crew
monitoring, and the requirements of balanced resource usage. In
fact, this is an NP-hard scheduling problem.

Literature Review:

Bennington and McGinnis gave a survey of the past research

in resource constrained project scheduling problems (Ref. i).

They demonstrated how to search for the optimal algorithm by

three basic approaches: the first approach was to formulate the

problem as an integer linear programming (ILP) problem, which can

be solved by standard ILP techniques; the second approach was to

directly employ some enumerative scheme for constructing an

optimal schedule; and the third was to formulate the problem in

terms of minimaximal paths in a disjunctive graph, which could be

solved by network flow methods or implicit enumerations.

In spite of the progress in research, almost all researchers

have agreed that the heuristic method is still the only viable

solution technique for large-scale practical problems since the

computing time would be prohibitively large if exact optimal

procedures were used. Studies of the complexity of the resource

constrained scheduling problems also draw lots of attention.

Coffman showed that these problems were actually NP-hard (Ref.

3). Elmaghraby (Ref. 5) and Coffman (Ref. 3) contain excellent

coverage of the recent results in resource constrained scheduling

problems.

In recent years, the emergence of expert system technology

has had a great impact on scheduling system design. Dhar and

Ranganathan used the university course timetable scheduling

problem as an example to contrast the advantages and

disadvantages of AI approaches versus OR approaches (Ref. 4).

They pointed out that the OR approaches had the following

disadvantages:

I. Single objective limitations: The objective function used in

OR formulation express one goal, but there are other goals

16

that the scheduling expert tries to satisfy.
2. Compiled knowledge limitations: Solutions are very sensitive

to the coefficients of the objective function, and some
default knowledge is difficult to incorporate into the
coefficients.

3. Global optimization limitations: Global optimization
essentially obscures the reasons for assignments and implies
lack of explanation for its decisions.

4. Lack of support in making plan revisions: Plan revisions are
inevitable, but it is very difficult for the decision maker to
revise the schedule with minimum perturbation in OR
approaches.

Jaap and Davis described an interesting review of the
software development of ESS (Ref. 8). The ESS software hard-coded
the scheduling rules in FORTRANto handle the time constrains and
the resource constraints. The scheduling core of ESS consisted of
five modules: the bookkeeper for resource tracking, the checker
for determining availability of resources, the loader to load the
schedule, the trace listing as an explainer, and finally the
selector to determine the ordering of scheduling the activities.
Two methods, the random-order method and the preference-order
method, were incorporated in ESS.

Boarnet documented the requirements of a scheduling expert
system tool from NASA's point of view (Ref. 2). It was one of the
best examples of the impact of expert system technology on the
design of the scheduling system software. In the paper, Boarnet
discussed the requirements of a scheduling expert system tool for
Space Station Freedom mission planning applications. He pointed
out that the scheduling tool should represent activities,
resources, and constraints, with facilities to group those
elements and to represent the time variance of the elements. The
tool should support activity scheduling and job scheduling.
Enumeration of alternatives with algorithms, hypothetical worlds,
rule systems, and schedule hierarchies should be integrated into
a powerful reasoning tool. The tool must support the procedural
code that might be necessary either for procedure attachment or
to control the scheduling techniques. The tool must support
interactive scheduling with intelligence that can be interactive
or automatic at the user's discretion, and with good human
factors.

In the panel discussion on "AI-Based Schedulers in
Manufacturing Practice" held in IJCAI-1989, Detroit, USA, Sidhu
(Ref. I0) pointed out that the most common mistakes in building
intelligent scheduling system include:
i. Inadequate analysis of dominant domain characteristics,

especially when prepackaged scheduling tools are used.
2. Inappropriate reliance on locally greedy strategies. Because

most scheduling problems are fairly complex, they are often
simplified by using simple local dispatching rules.

3. Misuse of shallow expert knowledge: Human schedulers always
over-simplify the constraints, or misrepresent situation-
dependent knowledge as general-purpose knowledge.

17

The special issue of AI magazine, January 1991, contains a

report of the workshop, "Issues in the Design of AI-Based

Schedulers", by Kempf et al. (Ref. 9). The issues covered in the

workshop included expert vs. deep vs. interactive schedulers,

integrating predictive and reactive decision-making, maintaining

convenient schedule descriptions, and some other advanced topics

like learning and benchmarks. Several points expressed by the

participants are very interesting and representative:

i. Fully automated schedulers are not as desirable as interactive

schedulers because the man and the machine bring complementary

skills to the scheduling task.

2. Many deployed scheduling systems contain only a small amount

of AI. Successful systems can be dominated by other issues

such as the user interface, database connections, and real-
time data collection.

3. One strong point for interactive methods is that they allow

humans to build schedules by methods that they naturally use

but are hard to represent, and allow humans to guide the
search.

4. Integration of predictive and reactive scheduling components

is important. A blackboard-style scheduling system

architecture may be appropriate.

5. Optimization is an ill-conceived objective for scheduling. It

is hard to define, and factory operations are unpredictable.

Fox and Smith proposed a knowledge-based system for factory

scheduling called ISIS (Ref. 6). The central idea of ISIS is that
schedule construction can be cast as a constraint-directed

activity that is influenced by all relevant scheduling knowledge.

In the paper, they pointed out that given the conflicting nature

of the domain's constraints, the problem differs from typical

constraint satisfaction problems, and one cannot rely solely on

propagation techniques to arrive at an acceptable solution.

Rather, constraints must be selectively relaxed and the problem-

solving strategy must be one that finds a solution that best

satisfies the constraints. This implies that the constraints must

serve to discriminate among alternative hypotheses as well as to

restrict the number of hypotheses generated. The design of ISiS
focused on two issues:

i. Construction of knowledge representation that captures the

requisite knowledge of the job shop environment and its

constraints to support constraint-directed search, and

2. Development of a search architecture capable of exploiting

this constraint knowledge to effectively control the

combinatorics of the underlying search space.

In constructing a job shop schedule, ISIS conducts a

hierarchical multi-level constraint-directed search in the space

of all possible schedules. The different levels of the search

provide multiple abstractions of the scheduling problem, each a

function of the specific types of constraints that are considered

at that level. Control generally flows in a top down fashion, and

communication between levels is accomplished via the exchange of
constraints.

18

Syswerda and Palmucci presented the construction of a
genetic algorithm based optimizer for a resource scheduling
application (Ref. 12). Genetic algorithms (GA) use Darwin's
fitness-for-survival principle to do function optimization. The
optimizer described in the paper is a combination of local expert
search and global search provided by a genetic algorithm. The
issues involved in the construction of a GA-based scheduler
include:

I. how to represent the schedule as a bit-string used in GA,
2. how to isolate the details of the problem from the GA.

They also pointed out that the system must be able to combine
manual scheduling of special cases with automatic scheduling
based on more general criteria. Manual scheduling is accomplished
by the use of an intelligent graphical interface. The interface
is intelligent in that it understands all the well-defined
constraints of the scheduling problem, and advises the user about
where to place tasks while disallowing the construction of
illegal schedules. We have similar graphical user interface in
SLS-PLAN-IT.

SLS-PLAN-IT's System Architecture:

SLS-PLAN-IT's approach to problem solving relies on three

highly interactive elements: a model builder to construct

activity and resource models, a user interface that takes into

consideration what the user needs to know and how he controls or

directs the scheduling process, and the scheduling strategies.

Hayes-Roth (Ref. 7) used a blackboard model to implement

their opportunistic strategy, planning both top-down and bottom-

up. Smith et al (Ref. ii) reported an extension of ISiS to OPIS

(the Opportunistic Intelligent Scheduler), which was implemented

with a blackboard style architecture. These knowledge sources

had implemented alternate scheduling strategies that extended and

revised a global set of scheduling hypotheses. Smith et al.

reported better performance than that of ISiS with the

multiperspective scheduling approach. These blackboard models

have beed adopted by SLS-PLAN-IT scheduling system.

The blackboard structure is a global, hierarchical data

structure partitioned to represent the problem domain as a

hierarchy of analysis levels. Each level consists of nodes that

are objects in the system implemented as frame structures. The

nodes are integrated by links, where a node in the hierarchical

structure represents an aggregation of lower level nodes. Thus,

the blackboard can be structured as an undirected graph of nodes.

However, one can place nodes without links on the blackboard.

During problem solving, partial schedules begin to grow on the

blackboard. The higher levels represent abstract decisions made

about the general pattern of the mission schedule, while the

lower levels represent decisions made about the specific details

of the schedule. The relationships of the nodes are either

specified by the model builder prior to the scheduling sessions,

or specified via the mouse by the user dynamically during the

19

manual-mode scheduling sessions. Thus, knowledge sources can
create decisions that refine the schedule from the higher to the
lower levels of the blackboard, growing the schedule in a top-
down fashion. Alternatively, knowledge sources can create
decisions about specific details of a schedule and incorporate
those decisions into the whole schedule, growing the schedule in
a bottom-up fashion. The knowledge sources are specialists that
access the blackboard by creating nodes, modifying nodes, or
modifying links between nodes. This allows a knowledge source to
contribute information without knowing which other knowledge
sources will be using the information. In SLS-PLAN-IT, the
knowledge sources are implemented as scheduling strategies that
can be triggered whenever a goal is posted or whenever data
changes. The three main components of the system are described in
detail in the following sections.

Model Builder

SLS-PLAN-IT uses a datatype specification modeling language

to model the scheduling requirements of the mission. The purpose

of having the modeling language is two-fold. Firstly, it is to

simplify resource definitions programming so that classes of

items already defined need not be re-coded by hand. Secondly, it
is to insulate the resource-describer from having to know the

exact order of resource definition commands that must be included

in the source code.

In response to the users' request to remove the major

obstacle that discourages the users from using SLS-PLAN-IT, a

model builder is currently under development and will be included

into SLS-PLAN-IT for the SLS2 mission.

The model builder will be able to construct activity models

and resource models. An activity can be an experiment to be

scheduled or an electrical storage to be discharged. Resources

include the depletables, the non-depletables and the human

resource. Examples include the power, the data rate, and the

crew.

An activity model will include a series of individual steps

to be performed in the experiment, the scheduling time ranges or

time allotment, the resources to be used, and the constraints in

scheduling. The steps in an activity may occur sequentially or

concurrently, or they may overlap one another.

Resources are modeled as timelines that show how each

resource is used or changed throughout the entire sequence. A

resource model will include the availability of the resource in

quantity and time, and the constraints in scheduling.

The activities and the resources interact with each other

throughout the scheduling process. Whenever an activity or a

step of an activity is changed, the resource timelines will be

updated. Whenever the usage of any resource has exceeded its

limits, a conflict will be detected. In this way, the resource

2O

models will serve as safeguards against the misallocation of the

resources.

User Interface

SLS-PLAN-IT's man-machine interface focuses on the graphical

presentation of the resources and activities. Control of the

program is through pop-up menus and mouse operations. The screen

of SLS-PLAN-IT is divided into six sections (see Figure). The

top section includes a status pane that displays operational

messages of the program, or the status information of the mouse,
or the detailed information related to the timeline interval over

which the mouse is positioned. The next five sections are

graphical displays of the experiment timelines, the equipment-

resource timelines, the non-depletable-resource timelines, the

target or attitude opportunity information window, and the

unattended-operation timelines, one below another. The

unattended-operations consume resources, but no crew were

associated with them except for occasional monitoring. The

details of an experiment can be edited interactively. The

PSi

_eSl

v_s]

PI.T

PIs

legal

n_
iq_?

HOL

ll||

lm

I

I

ml

4 IMaOII J I I I

If'JPIIIIIIIla I--"--"--'4 * I _"_

4W A f o I ,.I I

II'IIUP l I ! ,I I I

41 ! I I I . ; _

i,-II. Iam _, ,I

E[IIIt.lt- i T P,,ll,- 1lr-lilH4:

Figure

21

resource timelines display white where there is no load, gray

where loads exist with no resource conflict, and black to denote

a conflicting area. By positioning the mouse over an activity,

details of the activity will be displayed in the status pane to

aid the user in editing. When the mouse is over a resource

timeline, the status pane will display the amount of the resource

being used and the activities involved. When the mouse is over a

conflicted resource area, the status pane will display the
activities that caused the conflict.

When the entire SpaceLab sequence of the mission is

displayed, the screen is overwhelmed by the amount of detail.

Therefore, SLS-PLAN-IT provides a zooming facility for the user

to tailor the screen display to his/her need. The user can

examine any portion of the timelines at any specified scale.

Since SLS-PLAN-IT's display is interactive, the user can actually

watch during the automatic mode what the scheduling strategy is

doing as the experiments are being moved and modified. The

impact on the resource timelines and on the experiments is

directly and immediately shown to the user. At any point in the

processing, the user can redirect SLS-PLAN-IT to focus on a

different aspect of the sequence.

There are several modes of operation in SLS-PLAN-IT, from

running without user interaction to user controlling the search

or user manually scheduling the experiments. Therefore, the user

can select the level of control over the mission timeline, and go

back and forth among the various modes of operation.

An important feature of SLS-PLAN-IT is the explicit conflict

representation on resource timeline. This is a natural

representation for the expert user and thus made the interaction

with the user more direct and simpler. Since the experiments are

tracked explicitly on the Gantt-chart type timeline blackboards,

the experiments could be scheduled in any random order.

The ability of an expert scheduler to intuitively grasp what

the scheduling engine is trying to do is very important, as has

been noticed by several researchers as a necessary condition of a

successful scheduling system. SLS-PLAN-IT developers are well

aware of this.

Suhedullng Strategies

Besides the manual scheduling mode supported by the

blackboard structure, the constraint propagation mechanism and

the graphical user interface, SLS-PLAN-IT also supports automatic

scheduling mode with various scheduling strategies. One of the

fundamental ideas of SLS-PLAN-IT is that there is no single

"correct" way to sequence. In fact, no single way is powerful

enough to do the task in a reasonable time. Thus, SLS-PLAN-IT

supports a number of scheduling strategies that can then be

combined into a scheduling session.

In automatic mode, the system must be able to compare

different partial schedules and choose one to continue
scheduling. This requirement is reflected in the structure of
scheduling strategy. A strategy consists of three parts. The
first part is a goodness measure that indicates whether one
sequence is better than another. This measure can change from
strategy to strategy. Typically, the goodness measure rates the
total conflict on the resource lines. The second part is to
select activities to be changed, which can simply be all the
activities of certain types or the activities involved in the
worst conflict. The third part is to suggest the actions to be
taken such as to move, to modify, or to delete an activity. SLS-
PLAN-IT makes small changes, one at a time, to improve a goodness
rating.

Several strategies are currently implemented in SLS-PLAN-IT.
These strategies together form a hill climber. A goodness rating
will determine a topology for the search space. A strategy will
change the schedule until it finds a local maximum in the
topology of the search space. By selecting a different strategy,
the topology of the space will be changed and the SLS-PLAN-IT
will be able to continue improving the mission sequence.

SLS-PLAN-IT possesses meta-knowledge in the form of strategy
modifiers. These modifiers restrict the search space of a
strategy. An example of this is the restriction on the number of
resources a strategy could consider. This particular modifier is
based on the knowledge that, to the first order, a mission
schedule is determined by a small subset of the total number of
resources. Other modifiers force a strategy to only consider
moving experiments to areas of the mission timeline that have
little resource usage.

There seems to be no single best way in scheduling. The
scheduling techniques depend on the particular project, the life
point in the mission, and the current schedule. SLS-PLAN-IT is
able to represent many different scheduling strategies.
Flexibility in choosing a suitable scheduling strategy is the key
to successful scheduling. The concept of scheduling strategy
provides a natural hook of SLS-PLAN-IT system to any optimization
technique. Given a goodness measure as the objective function,
all the scheduling and sequencing techniques available from
traditional operations research discipline or non-traditional
combinatorial optimization approaches can be incorporated into
SLS-PLAN-IT in the form of scheduling strategies.

Current Status of SLS-PLAN-IT:

MIO of GE Government Services obtained the original PLAN-IT

source code from JPL in 1988. We have tailored the software for

use in the scheduling of Spacelab experiments to support the

Spacelab Life Science missions. Although the original PLAN-IT has

the ability to perform very specialized strategies to resolve

particular scheduling difficulties, the automatic mode that uses

the above strategies is still not powerful enough to handle the

overconstrained resource requirements of scheduling the Spacelab

23

mission timeline. MIO's current major concerns in SLS-PLAN-IT to

support the SLS-2 mission include the graphical user interface

and the automatic constraint propagation capability, which allow

the user to modify a timeline by mouse operations. We will

enhance the automatic scheduling capabilities for SLS-3.

A Spacelab mission timeline contains over fifty resources

and hundreds of experiments. The timeline engineers can manually

enter the initial schedule or use MSFC's tabular-form scheduler

ESP to produce the initial schedule. During SLS-I mission

planning phase, the timeline engineers used SLS-PLAN-IT to

maintain the schedule produced by ESP. After the schedule was

modified by SLS-PLAN-IT, the modified schedule was transmitted to

the Flight Planning System (FPS) for standard output plotting.

The SLS-PLAN-IT Scheduling System was used to support the

Spacelab Life Sciences-i (SLS-I) mission during the mission

period from 6/05/91 to 6/14/91. This on-line real time usage of

SLS-PLAN-IT during the mission demonstrated the strength of this

scheduling system. The timeline engineers of the Payload Activity

Planning (PAP) team confirmed that SLS-PLAN-IT is a flexible and

useful scheduling tool that provides a real time reactive

planning capability that the old scheduling system ESP/FPS

lacks. For example, the timeline engineer had used SLS-PLAN-IT to

reschedule the activities on flight day 9 due to short notice.

The ESP required more time than available to do this kind of

replanning. The SLS-PLAN-IT had won the user confidence and

acceptance that were not in existence in the early stage of PLAN-

IT development.

Feedbacks from SLS-PLAN-IT users during SLS-I mission are:

i. The system gives visual display of experiment timeline with

schedule conflicts indicated. Mission planning using SLS-PLAN-

IT is much quicker than using ESS.
2. The mouse and menu-driven user-interface of SLS-PLAN-IT and

the Gantt-chart like resource timeline are very convenient to

support manual-mode scheduling of the mission. Minimum user

training is needed for manual-mode scheduling if SLS-PLAN-IT

is used, instead of the six months training time of ESS.

3. It is usable as a real-time reactive mission scheduler with

prospects of increasing productivity of mission support staff

and increasing science returns of the Spacelab experiments.

4. A quicker and more convenient model-builder is needed to

support the SLS-2 mission. The integration of SLS-PLAN-IT with

other flight planning software needs to be improved.

Enhancement:

The on-line real time usage of SLS-PLAN-IT aroused the user

interests to further enhance the SLS-PLAN-IT software. The major

enhancement requirements include:

i. rehosting SLS-PLAN-IT to a SUN platform to boost the operation

speed and to allow better integration,

2. providing an intelligent model builder to enhance the model

editing capability and shorten the modeling and planning time,

24

3. providing more options for automatic file creation and

generation of operation output in current FPS format, which

includes the information of ground tracking, attitude

timeline, sun/shadow times and all other miscellaneous

information on other FPS output.

4. additional capabilities to support the execute shift

activities; the exact requirements are to be determined.

The direction we are taking is to completely replace the FPS

system with SLS-PLAN-IT in the SLS-3 time period. With a very

high level of user involvement, the SLS-PLAN-IT will evolve as a

fully automated knowledge-based scheduling system with graphical

user interface for space exploration.

In summary, the performance of SLS-PLAN-IT during the SLS-I

mission was very satisfactory. Recommendation for further

enhancements of the software was made for the SLS-2 mission. It

is expected that the SLS-PLAN-IT will completely replace the ESS

currently in use by the MIO in the SLS-3 time frame.

Conclusion and lessons learned:

During the development of SLS-PLAN-IT, we have gained some

useful experience in software engineering of an AI-based

scheduling system that we would like to share with the community:

i. Quick response time is crucial in real time scheduling
environment. One of the reasons that JPL's version of PLAN-IT

was abandoned is that it did not have a model editor. It took

an hour or more on Symbolics 3650 to incorporate the model

from ESS. We improved the operation time to about ten minutes
in the first version of SLS-PLAN-IT. Enhancements of the model

editor to support incremental model editing are in progress.

2. Good integration of the AI scheduler with all other Flight

Planning System (FPS) software is important because the

purpose of SLS-PLAN-IT is for operational daily usage to

support the mission.

3. Automatic shift of focus is difficult to achieve. There are

many scheduling strategies available in the automatic mode of

PLAN-IT. However, the users did not use them for the SLS-I

mission. One of the reasons is that the users do not fully

comprehend the scheduling strategies. We have to better

express the strategies to the users in more natural ways or

the "automatic mode" will stay unused.

4. It is very important to allow the users to play "what-if"

games during scheduling process and see why things happened.

This is one of the reasons the MIO mission planners switched

from using ESS to using SLS-PLAN-IT.

5. User-naturalness is the key to have a good user interface. For

example, the automatic constraint propagation capability of
SLS-PLAN-IT and the blackboard structure of the resource lines

are user-natural tools to support the above vital features•

6. The level of user involvement and expectation of SLS-PLAN-IT
is very high in MIO over MSFC and JPL. In fact, the users
always expect more than the developers can provide. We are
driven by the users and the users are driven by the scheduling
workloads they support•

7. The effects of a schedule change should be kept as local and

as minor as possible. Minimum disruption of the schedule is

sometimes more important than obtaining an optimal schedule.

Our experience with SLS-PLAN-IT reconfirms the observations

made in the IJCAI workshop mentioned earlier. Fully automated

schedulers are not as desirable as interactive schedulers because

the man and the machine bring complementary skills to the

scheduling task. Also, deployed scheduling systems contain only a

small amount of AI. The issues of user interface, database

connection, and real-time requirements dominate the system design

and user acceptance of the scheduling system• The most important

feature emphasized in SLS-PLAN-IT is the user-natural interface

to cooperate with humans in changing perspective or focus level

to support the opportunistic scheduling strategies. The various

strategies employed in the automatic scheduler are attempts to

simulate the opportunistic scheduling capability of the human.

Acknowledgment:

The authors would like to thank Mr. Michael Hollander and

Mr. William C. Eggemeyer of Jet Propulsion Laboratory for

providing us the source code of the original PLAN-IT software

and giving us valuable advice during the software conversion

period. We would also like to thank all the timeline engineers of

MIO/GEGS, Houston, Texas, for giving us their requirements and

user feedback concerning the SLS-PLAN-IT Scheduling System.

This work is performed by GE Government Services, Johnson

Space Center, Houston Texas in support of the NASA Mission

Management Office government contract NAS9-17884.

REFERENCE:

. Bennington, G.E., & McGinnis, L.F. (1972). A Critique of

Project Planning with Constrained Resources• Symposium on the

Theory of Scheduling and its Application, Springer-Verlag,

New York, 1973.

• Boarnet, M.G. (1986). Requirements for a Scheduling Expert

System Tool. NASA/JSC Mission Planning and Analysis Division,

Internal Memorandum #FM7(86-66), April 1986.

• Coffman Jr., E.G. (1976)• Computer and Job Shop Scheduling

Theory, John Wiley and Sons, Inc., New York, 1976.

4. Dhar, V., & Ranganathan, N. (1990). Integer Programming vs.

26

Expert Systems: An Experimental Comparison, CACM March 1990,

pp. 323-336•

o Elmaghraby, S.E. (1973). Symposium on the Theory of

Scheduling and Its Applications, Springer-Verlag, Berlin 1973

e Fox, M.S., & Smith, S.F. (1984). ISIS--A Knowledge-Based

System for Factory Scheduling. Expert System, Vol i, No. I,

July, 1984.

• Hayes-Roth, B. (1985). A Blackboard Architecture for Control.

Journal of Artificial Intelligence, Vol 26, pp 251-321.

o Jaap, J., & Davis, E. (1986)• Expert Scheduling for Spacelab

Mission. Proceeding of Conference on Space Applications of

Artificial Intelligence, Huntsville, AL, Nov 13-14, 1986.

• Kempf, K., Pape, C., Smith, S.F., & Fox, B.R. (1991). Issues

in the Design of AI-Based Schedulers: A Workshop Report. AI

Magazine, Special Issue Jan. 1991. pp. 37-46.

i0. Sidhu, S. (1989). Avoiding Typical Mistakes while Building

Intelligent Scheduling System. Panel Discussion on AI-Based

Schedulers in Manufacturing Practice, IJCAI-89, Detroit,

Michigan, USA, August, 1989.

ii. Smith, S.F., Fox, M.S., & Ow, P.S. (1986). Constructing and

Maintaining Detailed Production Plans: Investigations into

the Development of Knowledge-Based Factory Scheduling

Systems. AAAI's AI Magazine, Vol. 7, No. 4, Fall 1986.

12. Syswerda, G., & Palmucci, J. (1991). The Application of

Genetic Algorithms to Resource Scheduling. Proceeding of the

Fourth International Conference on Genetic Algorithms (ICGA-

1991), San Diego, CA, July 13-16, 1991.

13. Vere, (1981). Planning in Time: Windows and Durations for

Activities and Goals. IEEE Transaction on Pattern Analysis

and Machine Intelligence, Vol. 5, No. 3, pp. 246-267, May,

1981.

27

Detecting Opportunities for
Parallel Observations

on the

Hubble Space Telescope

Michael Lucks

Space Telescope Science Institute*
3700 San Martin Drive

Baltimore, MD 21218 _,-:j

Abstract (-2 _[_ "

The presence of multiple scientific
instruments aboard the Hubble Space
Telescope provides opportunities for
parallel science, i.e., the simultaneous
use of different instruments for different

observations. Determining whether
candidate observations are suitable for

parallel execution depends on numerous
criteria (some involving quantitative
tradeoffs) that may change frequently.
This paper presents a knowledge based
approach for constructing a scoring
function to rank candidate pairs of
observations for parallel science. In the
Parallel Observation Matching System
(POMS), spacecraft knowledge and
schedulers' preferences are represented
using a uniform set of mappings, or
knowledge functions. Assessment of
parallel science opportunities is achieved
via composition of the knowledge
functions in a prescribed manner. The
knowledge representation, knowledge
acquisition, and explanation facilities of
the system are presented. The

methodology is applicable to many
other multiple-criteria assessment
problems.

1. Introduction

Despite a well-known manufacturing flaw
in its primary mirror, NASA's orbiting

* Operated by the Association of Universities for
Research in Astronomy for the National
Aeronautics and Space Administration

/

Hubble Space Telescope (HST)has
produced images of unprecedented clarity
since its launch in 1990 [Kin91]. Repair
of the telescope's ability to resolve very

faint objects is .planned during a
maintenance mission in 1993, and
demands for observation time on the HST

have remained high.

In order to maximize the efficient use of

observation time, the Space Telescope
Science Institute (STScI) has promoted

the research and development of
advanced methods for scheduling
astronomical observations. Two software

systems -- Spike and Transformation --
developed at STScI have applied
artificial intelligence techniques toward
this end. Transformation [Ger91] is a
planning system for the grouping and
ordering of observation tasks.
Transformation converts observers'

requests for spacecraft activities into
hierarchical structures called scheduling

units (SUs) containing multiple
sequential tasks that may be subsequently
treated as indivisible entities for

scheduling purposes. Spike [Mil91,
Joh90a, Mi188] is a knowledge-based
system for long-range scheduling. Using
suitability functions [Joh90b] to represent
scheduling constraints and preferences,
Spike determines week-long segments
into which each SU may be scheduled.
The output of Spike is later refined into a
second-by-second calendar using the
Science Planning Scheduling System
(SPSS) [Tay91].

The presence of six scientific instruments
aboard the HST provides opportunities
for parallel science, i.e., the simultaneous
use of different instruments to observe

different targets. By overlapping multiple
observations, this concept clearly has the
potential to increase throughput. Parallel
science is particularly useful for schedul-
ing important exploratory surveys.
Without it, such explorations consume
considerable resources at the expense of
many other shorter and more specific ob-
servations. If executed in parallel with
other pre-scheduled activities, however,
such endeavors may be undertaken at

29

PRECEDING PAGE BLANK NOT FILMED

opportune times without excessive re-
source consumption. The parallel science
effort at STScI has been a substantial un-

dertaking, involving major extensions to
several existing software systems, includ-
ing Spike, Transformation, and SPSS.

To utilize parallel science, an observer
must specifically request that an
observation is to be conducted in parallel.
It is then the responsibility of schedulers
at STScI to find a corresponding non-
parallel (or primary) observation
somewhere on the HST calendar with

which the parallel task may be matched.
The large number of observations (on the

order of 104 primaries and 103 parallels)
and the wide diversity m their
requirements makes this a formidable

task. This paper describes the Parallel
Observation Matching System (POMS),
a knowledge-based advisory system
embedded into Spike that assists
schedulers in finding such matches
between primaries and parallels. For each
primary SU scheduled by Spike, POMS
ranks available parallel SUs according to
their compatibility with the requirements
of the primary.

Although compatibility between a primary
and a parallel depends on certain obvious
factors such as instrument constraints

(e.g., both tasks must not require the use
of the same instrument) and pointing
similarity (the two targets must be

sufficiently close), it also involves many
other more subtle criteria, some of which
are quantitative in nature and introduce
tradeoffs into the assessment. The

advisory system must be able to represent
and aggregate the effects of such criteria.

Another salient characteristic of the

problem is that the match assessment

criteria are likely to be vague, particularly
in the early stages of the parallel science

project, since parallel scheduling policies
have not been firmly established and the
full effects of the criteria are not yet well
understood. Hence, knowledge is likely
to be tentative, incomplete, and subject to
frequent change. Ease of incremental

extension and modification of the

knowledge base is therefore crucial to the
success of the system.

The knowledge representation scheme
used in POMS permits the construction of
a scoring function for ranking primary-
parallel matches. The scoring function is
built from modular units of knowledge
about individual criteria and from a

modifiable aggregation formula that is an
explicit part of the knowledge base. The
approach has been used previously in a
very different application, i.e., a

prototype advisory system for selecting
mathematical software from numerical

subroutine libraries [Luc92]. POMS is
the first production level application of
the technology. The approach extends
existing representation media in its
capabilities to express quantitative
tradeoffs and complex interactions among
multiple criteria [Lucg0], while retaining
the traditional advantages of expert
systems for incremental modification and
explanation.

POMS is implemented in the Common
Lisp Object System (CLOS)
programming language.

The remainder of the paper is organized
as follows. Section 2 describes the

architecture and high-level functionalities
of the system. Section 3 introduces some
terminology and notation required to
describe the knowledge representation.
The assessment criteria are described in

Section 4. The knowledge representation,
explanation, and knowledge acquisition
facilities are presented in sections 5, 6,
and 7, respectively. In section 8 we
discuss the preliminary results of the
POMS project.

2. System Overview

The architecture of POMS is depicted in
Figure 1. The three major components of
the system are: (1) the parallel database,
(2) the parallel knowledge base, and (3)
the parallel matcher.

30

I Parallel]

__,- --explanations

Figure 1. Architecture of POMS

The parallel database is a relational
database that stores descriptive
information about each primary and
parallel (e.g., pointing, instrument, and
timing requirements). This information is
accessible to the matcher when needed at
run time.

The parallel knowledge base contains the
assessment criteria used to evaluate the

compatibility between primaries and
parallels. The knowledge base was
initially constructed by the POMS
developers (with input from systems
engineers), however it may be modified
by users (schedulers).

The parallel matcher is the POMS control
mechanism. The matcher is invoked after

the primaries have been scheduled by
Spike to week-long segments, but before
these primaries are delivered to SPSS for
short-term scheduling refinement. The
matcher evaluates the compatibility of
each scheduled primary with each
available parallel in the database, based
on the descriptions of the SUs contained
in the database and the scheduling
knowledge/preferences contained in the
knowledge base. Each primary-parallel
pair is assigned a score, and the highest
ranked matches for each primary are
delivered to SPSS.

Upon request, the matcher also generates
explanations of its advice for inspection
by users and knowledge engineers.

3. Terminology and notation

The following notation and terminology
are used in the subsequent description of
POMS.

P is a set of primaries that have been
scheduled for a specific week by Spike.

p is a primary SU in P.

Q is a set of parallel SUs to be matched
with P.

q is a parallel SU in Q.

R = {rl, r2 rk} is a set of properties
that characterize primaries and/or parallels
(target, time duration, instrument, etc.).
Properties may be viewed as functions on
P u (2 eg.:

if rl = "primary-target", rl(p) returns a
list of two elements containing the
celestial longitude and latitude of the
primary's target;

if r2 = "parallel-instrument", r2(q)
returns the name of the scientific

instrument required by the parallel;

if r3 = "primary-duration" r3(p) returns
number of seconds allotted to the

primary during which parallel science
may be conducted;

if r4 = "primary-week" r4(p) returns the
week to which p has been scheduled.

To avoid ambiguity, properties that apply
to both primaries and parallels (e.g.,
"target" or "instrument") are represented
as two distinct properties ("primary-
target," "parallel-instrument"). For
notation, assume that properties 1,2 h
apply to primaries, and properties h+l,
h+2 k apply to parallels, i.e., R = rl,

r2 rh, rh+l, rh+2 rk. Property
values either exist explicitly in the parallel
database (e.g., the primary or parallel
instrument), or are determined by the
Spike scheduler (e.g., the week to which
a primary has been scheduled).

31

F = {fl,f2 fn} is a set of evaluation
criteria or features upon which the

compatibility between a primary and a
parallel is assessed. Examples of features
for a primary p and a parallel q are:
"pointing" (the targets of P and Q must be
sufficiently close to one another),
"instruments" (p and q must not both
require the use of the same scientific
instrument), and "timing" (p and q match
best when they each require
approximately the same amount of
execution time). Note the distinction
between features and properties, i.e.,

properties are characteristics of a primary
or a parallel (e.g., the instrument used),
while features are characteristics of a

match (e.g., whether the instruments
used by the primary and the parallel are
the same). Property values are required
for the evaluation of features (see below).

The evaluation interval L = [LI, Lh] is a
sub-interval of the real numbers, where
LI < Lh. LI is the lower bound of L and
Lh is the upper bound. L is the range of
the scoring function, as well as the range
of some of the mappings used in the
knowledge base. In the POMS
knowledge base L = 10,1], although this
restriction need not hold in general.

The neutrality point LN c L indicates a
"neutral" value in the evaluation interval.

This reflects a "moderate" compatibility
score (i.e., not particularly compatible,
nor particularly incompatible). In POMS,
LN = 0.5.

The scoring function H : P x Q-> L
evaluates the compatibility of any primary
p with any parallel q. For all p, p'_ P
andq, q'_ Q, H(p,q) > H(p',q')iff
the match between p and q is considered
better than the match between p' and q'.
Since any p or q is described by
properties, we may consider the domain
of H to be vectors of property values,
i.e., H(p,q) = H(rt(p), r2(p) rh(p),
rh+ 1(q) rk(q)).

The matching score for a primary p and a
parallel q is the value returned by the

scoring function H when applied to a
primary-parallel pair.

Feature evaluation is the assignment of a
value to a feature for a particular primary-
parallel pair. This assignment is an
expression of the compatibility between p
and q with respect to a single feature. For
example, if p and q both require the same
instrument, then the feature "instruments"

would evaluate to 0, indicating that the
pair is incompatible with respect to this
feature. If different instruments are

required, then "instruments" evaluates to
I for the pair. For certain features,
intermediate values are possible. Some
features are qualitative, i.e., they are
either totally present or totally absent. For
example, the instruments used by p and q
either are or are not the same. The

absence of a single qualitative feature may
be sufficient to disqualify p and q from
simultaneous execution. Other features

are quantitative, i.e., they are exhibited to
varying degrees, possibly on a
continuous scale. The feature "timing",
for instance, is associated with a
goodness-of-fit measure, i.e., the closer
the timing requirements of p and q, the
better the match.

4. Matching Criteria

Currently, the POMS knowledge based
represents the effects of ten features. Five
features ("timing", "priority", "roll",
"mechanism-motion", "pcs-mode") are
quantitative, and the others
("instruments","pointing", "nssc-usage",
"permits-parallels", and "manual-match")
are qualitative.

"Timing" is the degree to which the
primary's time available for parallel
science matches the time required by the
parallel. The most compatible situation
occurs when p has slightly more time
available than is required by q. If p is
much longer than q, then the match is not
as good, since the extra time would be
better utilized in a match with a longer
parallel. If p is much shorter than the q,
then the primary and parallel are clearly
incompatible. Total incompatibility does

32

not exist, however, when p is only
moderately shorter than q, since the
short-term schedulers may have reason to
delay the initiation of the next primary,
thereby permitting the parallel to finish.
"Timing" is a continuous feature that, in
general, assumes values intermediate to
the stereotyped situations described
above.

"Priority" is number indicating the
scientific importance of a parallel SU, as
determined by a peer review committee
and the Director of the STScI. The higher

the number, the higher the compatibility
of a parallel with any primary.

When both the primary and parallel have
fixed point targets (as opposed to target
regions -- see below), it is usually
necessary to roll the spacecraft (rotate it
about an axis parallel to its bore) in order
to bring both targets into the fields of
view of both instruments. "Roll" is the

number of degrees of spacecraft roll
required to do this. Since rolling the
spacecraft takes time, the greater the roll,
the lesser the compatibility.

The HST has a pointing control system
(PCS) that stabilizes the spacecraft during
observations. The PCS operates in three

different modes, depending on the de .gree
of stability required by the observation.
The more stable modes require

successively greater overhead time. The
policy has been adopted that no matches
are permitted between parallels whose
PCS requirements are more stringent than
the primaries, since the additional
overhead would delay the pre-scheduled
primary. The best case occurs when the
primary and parallel have the same PCS
requirement. Matches are permitted in
cases where p has a stricter requirement
than q, however this is less desirable than
the above case, since p's strict
requirement is "wasted" on a parallel that
doesn't really need it. The feature "pcs-
mode" reflects these considerations. If

p's PCS mode is greater than q's PCS
mode, than p and q are incompatible with

respect to "pcs-mode". Otherwise, the

greater the difference between the two
modes, the lower the compatibility.

The feature "instruments" expresses
whether or not the scientific instruments

required by p and q are a legal
combination for parallel science. Certain
instruments are currently precluded
entirely, however this is subject to
change. If the parallel instrument is
allowable and is not the same as the

primary instrument, then p and q are
totally compatible with respect to this
feature.

The feature "pointing" exhibits total

compatibility when the targets for p and .q
are positioned sufficiently close to perrmt
parallel observations. Otherwise, p and q
are incompatible with respect to the
feature.

Some observations use instruments with

moving parts, which causes the HST to
vibrate slightly. Other observations
cannot tolerate such small vibrations.

Obviously, these two types cannot be
executed in parallel. The feature
"mechanism-motion" exhibits total

incompatibility in such cases, and total
compatibility otherwise.

An NSSC-1 computer aboard the

spacecraft is used to store a variety of
temporary data. Since only one
instrument at a time may access the
computer, p and q are incompatible if
they both require its use. The feature
"nssc-usage" expresses this criterion.

There are numerous reasons why certain

primaries are excluded out of hand from
consideration for parallel science. In such
cases, the feature "permits-parallels"
exhibits total incompatibility.

By setting appropriate fields in the
parallel database, the scheduler is
permitted to force a match between a
particular p and q. In such cases, the
highest matching score is assigned to the
pair, thereby guaranteeing its delivery to
SPSS. In such cases, the feature

33

"manual-match" exhibits total

compatibility.

5. Knowledge representation

The POMS knowledge base contains

expertise about the semantics and
influences of matching criteria, encoded
via a structured set of expert-supplied
numerical mappings, or knowledge
functions. The knowledge functions
generate a network, whose traversal
implements the application of the
knowledge base to a candidate primary-
parallel pair. The output of the network is
a numerical score that estimates the

degree to which the primary and parallel
are compatible.

There are four types of knowledge
functions, each with a specific
representational task:

(1) measurement functions, which

quantify, the degree to which a feature is
present m a primary-parallel pair,

(2) intensity functions, which normalize

the degree of each feature's presence;

(3) compatibility functions, which
describe relationships between feature
intensity and the goodness of a match,
with respect to a single feature;

(4) an aggregation function, which
combines individual feature

compatibilities into an overall assessment
of the match.

Application of the knowledge base to a
pnmary and a parallel is achieved via the
composition of the knowledge functions
in a prescribed manner. Figure 2 depicts
how this composition may be viewed as
a traversal of a network in which the arcs

are knowledge functions and the nodes
are function inputs/outputs. Processing of
the knowledge base corresponds to
traversal of the network from bottom to

top. The inputs to the network are

property values for a primary p and a
parallel q. The n measurement functions
accept these inputs and return n

measurement values. The intensity
functions accept the measurement values
and return n intensity values.
Compatibility functions accept intensity
values and return n compatibility values.
Finally, the compatibility values are
mapped into a single number H(p,q) at
the figure's top.

H(p, q)

function

compatibility values ...q

compatibility functions ...

... intensity values ...

12 ... intensity functions ... 3

I... measurement values

M2 ..measurement function/i n

I

Properties of p, q I

rl(P) , rh(P), r h+l(q) , r k(q) I
Figure 2. Network model of scoring
function H for primary p and parallel q

5.1 Measurement functions

For each feature fi, there is a
measurement function Mi-: P x Q --, S i
where Siis the (feature-dependent) rang6
of M i. M i is a procedure to measure fi.

The ihput_ to Mj are property values ani:l
the output is a measurement value m i that
expresses (in feature-dependent unit_) the
presence of fj in a primary-parallel pair.
The measurement function for fi
"instruments", for instance, returns I'
NIL, depending on whether the

34

instruments used by the primary and
parallel are different or the same. As an
example for a quantitative feature, Mj for
the feature fj = "timing" accepts two
inputs: tq, the-length of time (in seconds)
required by the parallel for its execution,
and t, the number of seconds available

P , ° °

for parallel science beginning with the

start of the primary. .pt and tq are property
values stored m the parallels database, Mj

returns, a measurement, value mj = tp - tq,
1.e., the difference between the length of
time available and the length of time
required for a primary-parallel pair.

In certain cases, the measurement

function involves more complicated
calculations, e.g., the measurement
function for the feature "roll" might
compute the number of degrees of roll
required by the spacecraft to bring both
targets into view. The criteria and
methods used for measuring features are
chosen by the domain expert.

5.2 Intensity functions

For each feature fj, there is an intensity
function Ij : Sj _ L, where Sj is the
range of the measurement function Mj. Ij

normalizes the measurement value mj into
a uniform scale. In POMS, intensity
functions are defined as sets of points
provided by the domain expert. For
qualitative features, the mapping is
frequently trivial, i.e., the measurement
value is either 0 (signifying total absence

of fj) or 1 (signifying total presence). For
example, if fj = "instruments" (as
described in the previous section), Ij
simply maps Sj = {T, NIL} into {0,1}
(Table 1). For quantitative features that
assume continuous values, the ordered
pairs generate a piecewise linear function

where additional points may be defined to
arbitrarily fine gradation at the discretion
of the domain expert. In such cases, a
"neutral" intensity value i- = 0 5 indicatesj •
moderate presence of fi. For example,
intensity for the featur6 fj = "timing",
refers to the degree to which the time
available exceeds the time required, i.e.,
if p is a very short primary SU and q is a

very long parallel SU, then the feature
timing is considered to be weakly present
in the pair. Conversely, "timing" is
strongly evidenced when a very long
primary is matched with a very short
parallel, and the feature is neutral when
the time available is equal to the time
required. This behavior is represented in
a table of ordered pairs defining Ij (Table
2). Domain values not explicitly
represented in the table are derived by
linear interpolation (e.g., Ij(200) = 0.40).
Since linear interpolation-requires finite
values, the infinite values at the extremes
must be compromised by finite
approximations -- in this case 100,000
and -100,000 -- beyond which the
function value will not change. The
particular data points chosen by the expert
are somewhat arbitrary and represent an
approximation to the expert's
interpretation of the feature's semantics.

Note that intensity is a function only of
the feature, not the goodness of a match,
i.e., high intensity does not necessarily
imply that the primary and parallel are
well-matched with respect to the feature.
For example, neutral intensity for
"timing" (i.e., a situation where the
primary and parallel have the same timing
requirements) is a more compatible
situation than high intensity (i.e., a
situation where the time available from

the primary greatly exceeds the time
required by the parallel). This is
illustrated in the following section.

Table 1. Intensity function for feature

fl = "instruments"

mi

NIL

i i = Ii(m i)

0.0

T 1.0

35

Table2. Intensityfunctionfor feature
fi = "timin ,"

_OO

- 100,000

- 10,000

- 1,000

-400

0

400

1,000

10,000

100,000

+co

0.00

0.03

0.20

0.30

O.5O

0.70

0.80

0.97

1.00

1.00

5.3 Compatibility functions

For each feature fj, there is a
compatibility function Cj : L _ L. Cj

represents the compatibility between a
primary and a parallel with respect only to
feature fj as a function of the feature's
intensity-'The input to C" is the intensity

. • . o J

value lj.The compaubllity value cj = Cj(ii)
represents the goodness of the m_/tch

between p and q with respect to fj. Like
intensity functions, compatibility
functions are represented as sets of
ordered pairs. Table 3 shows the
definition of C" for the feature f" =

• J"instruments". W_en the feature is absent

in the primary-parallel pair (i.e., ij = 0,
denoting that the pair uses the same
instrument), the pair is incompatible with
respect to "instruments". If the feature is

present with maximum intensity (i.e., ij

= 1.0, denoting that p and q use different
instruments), then the pair is judged to be
totally compatible (c" = 1 0) with respectj •
to the feature. Table 4 shows a more

complicated compatibility function for the
quantitative feature "timing".

Table 3. Compatibility function for

feature fi = "instruments"

ii

0.0

1.0

c i - Ci(ii)

0.0

1.0

Table 4. Compatibility function for

feature fi = "timing"

ii

0.0

0.4 0.3

0.5 0.45

0.55 0.5

0.6 0.7

0.8 0.5

0.9 0.42

1.0 0.25

Here Cj encodes the belief that the
optimal compatibility (0.7) is achieved
when the intensity is moderately high
(0.6). This reflects a situation where the
time available is greater, but not too much
greater, than the time required.
Compatibility declines for higher values
because the extra time available would be

wasted (and used better with a longer
parallel). Situations where the time
available is less than the time required are
not considered incompatible because
SPSS may choose to delay the initiation

36

of the next primary, in which case the
parallel may continue to completion. The
compatibility declines sharply as the
negative timing disparity increases,
however.

The precise values chosen by the expert
to define quantitative compatibility
functions are not arbitrary. The method
for defining these mappings is described
in section 7.

5.4 Aggregation function

The knowledge base contains a single

aggregation function A : Ln -_ L whose
purpose is to combine the compatibility
values el, c2, Cn into an overall
matching score for a primary-parallel
pair. The aggregation function is not a
predetermined formula, but rather it is
defined by the expert as an explicit part of
the knowledge base. It depends on the
evaluation features, and may be changed
at the expert's discretion. To capture the
particular semantics of different features,
the aggregation function is built up from
operators called aggregation primitives,
MIN, MAX and or. The primitive
operators reflect three different modes of
aggregation between features.

For simplicity, we describe each primitive
as a binary operator, but since all three
are associative and commutative, they
may generalized in a straightforward
manner to n-ary functions whose
arguments may be evaluated in any order.
Each primitive accepts two compatibility
values ci and c i as arguments and returns
a value equal to the aggregate effect of ci

and cj. The semantics of the three
operators are shown in Table 5. MIN

simply returns the minimum of ci and cj,
while MAX returns the maximum. MIN

and MAX represent cases where the
compatibility of either feature always
dominates the aggregation, e.g., if ci <

, then MIN(ci, ci) - ci, regardless of
e precise value of cj, i.e., no tradeoffs

are exhibited, a is-used to express
tradeoffs and compensations, i.e., neither
feature dominates and the aggregate effect

depends on the precise level of each
feature.

An example of MIN occurs between the
qualitative features fi = "instruments" and
_ri= "permits-parallels". If a candidate

mary-parallel pair is incompatible with
respect to instruments, (i.e., ci = 0) then
the aggregate effect is always
incompatible, whether or not the primary
permits parallel science. Similarly, if
parallel science is not permitted on the
primary (i.e., ci = 0), then the aggregate
effect is always incompatible, whether or
not the instruments are compatible. These

semantics are captured by MIN(ci, cj.).
Note that for qualitative features, MIN is
equivalent to the logical conjunction (i.e.,
overall compatibility requires individual
compatibility from both features), hence
this mode of aggregation is called
conjunctive.

An example of MAX occurs between fi =

"instruments" and fj = "manual-match".
Since "manual-match" overrides all other

features, if a user requests a manual
match between a primary-parallel pair

(i.e., cj = 1), then the aggregate effect is
always totally compatible, regardless of
"instruments" compatibility. (Obviously,
this feature assumes some special
knowledge on the part of the user, and is
not to be used carelessly.) These
semantics are captured by MAX(ci, cj).
Note that for qualitative features, MAX-is

equivalent to the logical disjunction (i.e.,
compatibility from either feature implies
aggregate compatibility), hence this mode
of aggregation is called disjunctive.

An example of a occurs between the
features "timing" and "priority".
Regardless of how compatible the
candidate pair is with respect to timing,
the aggregate effect may be raised
(lowered) by the influence of a high (low)
priority. The influence of "priority" is
similarly modified by the effect of timing
compatibility. A significant property of ct
is that neutral compatibility in either
feature has no effect on the aggregation,

i.e., a(cj, LN) = ot(LN, cj) for all cj. This

37

mode of feature interaction is called

compensatory.

The formula used to model these

semantics depends on the choice of the
evaluation interval L and the neutrality

point LN. In POMS (L = [0,1] and LN =
0.5), we use _ : L _ L defined as

cicj
a(Ci,Cj)- CiCj + (1-Ci) (1-Cj)

a is a special case of a symmetric sums
operator [Si179]. Its properties are
discussed in [Luc90]. This definition for

is not unique, i.e., other formulas
might yield qualitatively similar results.
See [Che88] for a formal mathematical
treatment of related families of

aggregation operators. Note that a creates
a zero-divide condition when one of the

inputs is 0 and the other is 1. To avoid
this possibility, compatibility functions
that return a value of 1 for any finite
measurement value are not allowed for

compensatory features. This restriction
reflects an assumption that no single
compensatory feature is sufficient to
dominate the matching process.

The aggregation primitives constitute a
simple language for expressing complex
interactions among multiple features. In
principle, additional operators may be
added to the language, although MIN,
MAX, and a have thus far sufficed.

Table 5. Behavior of aggregation
,rimitives

ci c i MAX MIN

high high high high

high low high low

low high high low

low low low low

Gt

very high

moderate

moderate

very low

The aggregation function A is defined as
a composition of aggregation primitives.

This process may be visualized as a parse
tree in which the leaves are compatibility
values and the internal nodes are

aggregation primitives. Figure 3 is an
example of an aggregation parse tree for
the features fl = "manual-match", f2 =
"permits-pars", f3 = "priority" and f4 =
"timing". Here A = max(cl, (min (c2,
a(c3, c4)))). The aggregate effect of
"priority" and "timing" is compensatory,
and their combined effect is conjunctive
with "permits-parallels". Finally, the
aggregate effect of the three lower
features is disjunctive with "manual-
match". For example, if:

(1) a manual match is not requested
(i.e., Cl = 0);

(2) the primary permits parallel
science (i.e., c2 = 1);

(3) the parallel has been assigned a
high priority (e.g., c3 = 0.8);

(4) the timing compatibility is fairly
low (e.g., c4 = 0.3);

then the matching score for a candidate
pair displaying these features is
MAX(0, MIN(1, or(0.8, 0.3))) = 0.63.

/

Figure 3. Example of aggregation
function parse tree. A(cl, c2, c3, c4) =
0.63

311

Thefull aggregationfunction (expressed
in then-ary format) currently used in the
POMS knowledge base is:

MAX(cl0, MIN (c6, c7, c8, c9, a(Cl, c2,
c3, c4, c5))),

where Cl = "timing", c2 = "priority", c3 =

"roll", c4 = "mechanism-motion", c5 =
"pcs-mode", c6 = "instruments", c7 =
"pointing", c8 = "nssc-usage", c9 =
"permits-parallels" and Cl0 = "manual-
match". This formula reflects that (1) cl
through c5 are compensatory with respect
to one another; (2) c6 through c9 and the
aggregate of Cl through c5 are mutually
conjunctive; and (3) Cl0 is disjunctive
with all other features.

6. Explanation

Upon request, the matcher generates
tables that explain its assessments. Each

table summarizes the reasoning that went
into the matcher's analysis of the
compatibility between a particular
primary-parallel pair. An example
(reformatted) is shown in Table 6. The

header of the table contains the unique
SU identification numbers for p and q,
and the matching score. In this case, the
score of 0.565 indicates that p and q are
moderately compatible.

Each row in the table corresponds to the
evaluation of a particular feature. The f'u'st
column contains the feature's name. The
second and third columns contain relevant

property values for the primary and the
parallel, respectively. The primary
column in row 1, for example, shows the
number of seconds available for parallel
science for p (9700), and the parallel
column shows the time required by q
(700 seconds). For legibility, the name of
the property and the units of measurement
are not listed in the table, but they are
understood by schedulers who are
familiar with POMS.

Columns 4, 5 and 6 contain the

measurement, intensity and compatibility
values, respectively, for each feature.
Recalling the "timing" measurement

function (Section 5.1), the measurement
value in row 1 is the difference between

the time available (column 2) and the time
required (column 3), or 9000 seconds.

By Table 2, this yields an intensity value
of 0.95, indicating that there is quite a lot
of excess time available. POMS

recognizes (via the "timing" compatibility
function, Table 4) that this large excess
is undesirable and assigns a low "timing"

compatibility value (0.33) to the primary-
parallel pair.

Table 6. Explanation of match assessment

Primary 0091401 Parallel 0091505 Score -- 0.556

Feature Primar_ Parallel Mea Int Com

timing 9700 700 9000 0.95 0.33

priority - 3.8 3.8 0.70 0.62

roll 131.4 Or 360 0 0.0 0.50
mech-

motion Y_ Y N r Y 1 0.75 0.53
pcs-
mode fine fine 0 1.0 0.58
instru-

ments WFPC FOC T 1.0 1.0

2.0, 6.0 r,9.0,5.0 T 1.0 1.0
pointing 8.0,2.0

nssc-

usage N N N 0.0 1.0

permits-
parallels y - T 1.0 1.0

- - N 0.0 0.0

manual-
match

For the next feature, "priority", the only
significant property is the scientific

priority of the parallel, 3.8. No primary
properties are relevant, hence the primary
column for "priority" is blank. The
measurement function for "priority"
simply returns the priority property value,
hence it is also equal to 3.8. Priorities are
assigned on a scale of 1 to 5, hence 3.8

is considered to be a fairly important
observation, i.e., the intensity value for

"priority" is high (0.70). This high
intensity is viewed by POMS as having a

39

fairly strong positive influence
(compatibility value = 0.62).

The primary column for "roll" contains
the orientation of the spacecraft (in
degrees, relative to an HST-specific
coordinate system) that is intended for
observing p. In this case, this so=called
"nominal orientation" is equal to 131.4
degrees. The parallel column contains an
orientation interval that is sufficient to

view both the primary and the parallel. In
this case, the interval includes all possible
orientations, i.e., 0 to 360 degrees. (Any
orientation is sufficient because the

parallel has a region target that contains
the primary target. See "pointing",
below). The roll measurement function
computes the minimum number of
degrees that the spacecraft must rotate
from the nominal orientation, in order to
reach the desired interval. In this case, the
nominal orientation is within the desired

range already, hence no roll is required.
This fact is recorded in the "roll"

measurement value (0 degrees). For
"roll", this minimal intensity implies
neutral compatibility, i.e., the feature will
have no effect on the overall assessment

(compatibility value = 0.5).

The primary column for "mechanism-
motion" refers to two properties: (1)
whether or not the primary requires
mechanism motion ("Y indicates motion
is required); and (2) whether or not the
primary can tolerate motion ("Y" means
"yes"). The same scheme is used for the
q, hence the parallel column for
"mechanism-motion" indicates that the

parallel can tolerate motion, but does not
require it. The measurement function for
"mechanism motion" recognizes this
situation and returns a tag value of 1 to
the measurement value. (The simple
tagging scheme for measuring this feature
and its related intensity function are not
described here.) This combination of
motion requirements is considered to be
mildly favorable, hence a slight positive
compatibility value (0.53) is assigned.

Both p and q require the strictest PCS
mode. This is a favorable situation, hence

"pcs-mode" exhibits a compatibility value
of 0.58.

The remaining features are qualitative, p
and q use different instruments (the wide-
field planetary camera (WFPC) and the
faint object camera (FOC)). Neither uses
the NSCC-1 computer, while the primary
permits parallel observations, and no
manual match has been specified. Hence,
the conjunctive features "instruments",
"nssc-usage" and "permits-parallels" each
exhibit maximal compatibility, and the
disjunctive feature "manual-match"
exhibits minimal compatibility.

The primary column for the feature
"pointing" contains the celestial
coordinates (2.0 degrees longitude, 6.0
degrees latitude) of the primary target.
The parallel properties indicate that q has
a region target, i.e., a region of space in
which any specific pointing is sufficient.
(Region targets are quite common for
parallels.) The parallel column describes
this region as a rectangular area ("r")
centered at 9.0 longitude and 5.0 latitude,
with a longitudinal extent 10.0 degrees
from center, and a latitudinal extent 2.0
degrees from center. Since the primary
pointing is contained well within the
parallers target region, p and q are
compatible with respect to pointing. (This
also explains why any orientation of the
spacecraft is acceptable.)

Application of the POMS aggregation
function (Section 5.4) yields a slightly
positive matching score of 0.556, despite
the poor time-fit. POMS has concluded
that the timing problem is outweighed by
the combined positive influences a high
scientific priority, favorable mechanism
motion and pointing control
requirements.

7. Knowledge acquisition

In this section, we describe the methods
used in POMS for acquiring new
expertise and for modifying an existing
knowledge base.

4O

7.1 Adding new knowledge

The process of acquiring new knowledge
in POMS is relatively structured,
compared to conventional knowledge-
based systems where acquisition usually
requires informal (and often lengthy)
dialogs between the domain expert and
the knowledge engineer. New knowledge
in POMS always comes in the form of a
new feature to be added to the assessment

process. Support for the new feature
requires the expert to provide definitions
for the new measurement, intensity and
compatibility functions, and to extend the
existing aggregation function to include
the new feature. To illustrate this process,
assume that a new feature fn+l is being
added to a knowledge base containing fl,
f2 fn.

First, the domain expert selects a name
for fn+l, decides on a procedure for

measuring the new feature, and
determines what SU properties are

required for the analysis. The knowledge
engineer then implements the procedure
in CLOS. A pointer to this code is added
to the knowledge base so that it is
invoked whenever the new measurement

function Mn+l is applied.

For the intensity function In+l, the expert
provides a set of ordered pairs as in
Section 5.2. For qualitative features, this
is straightforward. For quantitative
features, the function should reflect the

expert's intuitive understanding of the
feature's semantics.

Extension of the aggregation function A

to incorporate fn÷l requires the addition
of a new branch and leaf (and possibly a
new internal node) to the existing parse

tree for A. The expert is requested to
identify the modes of interaction between
the new and existing features. Based on
this analysis, the placement for the new
leaf Cn+l is identified. (For difficult
cases, this ad hoc extension technique

may be assisted by a partially mechanical
procedure [Luc90].) The engineer then
makes a corresponding change in the

formula that implements the aggregation
function in the knowledge base.

To elicit a new compatibility function
Cn+l for fn÷l, a context is constructed in
which the levels of the existing features
are constrained such that the new

feature's effect completely dominates the
aggregate compatibility of fl,f2 fn+l.
Under these assumed constraints, A(cl,
c2 Cn, Cn+l) is exactly equal to Cn+l =
Cn+l(in+l), for all in+l (see below).
Hence, in the assumed context, A =

Cn+l. To illustrate such a context, we
consider the case where all features are

compensatory, i.e., where
A(cl,c2 Cn+l) = a(Cl,C2,...,Cn+l). In
this case, the desired context is achieved

by assuming that the aggregate effect of
fl,f2 fn is neutral, i.e., A(Cl,C2 Cn)
= or(el,c2 Cn+l) = LN. Under this

assumption, A(cl,c2,...,Cn+l) = Cn+l =
Cn+l(in+l), for all intensity values in÷l,
i.e., the aggregate compatibility of
fl,f2 fn÷l is completely dominated by
fn÷l. This equality, which is easy to

verify formally, is consistent with the
intuitive interpretation that neutral
compatibility has a neutral aggregative
effect among compensatory features.

Once the context has been established, the

expert is then asked to estimate the
matching score for various selected
intensity values in+l, with the other
features fixed at their assumed levels.

Since A = Cn+l, each matching score is

equivalent to a compatibility value Cn+l.
Hence, each <in÷l, matching score> pair

is equivalent to a <in+l, Cn+l> pair. The
set of such pairs becomes the new
compatibility function Cn+l.

The rationale for the above strategy is that
it yields the expert's opinion of the
direction and degree to which the new
feature displaces the neutral effects of the
other features. This "strength of
displacement" is the essential heuristic
used to estimate a feature's significance to
the overall aggregation.

Consider a simple case in which
f2="priority" is being added to the

41

existing knowledge base which contains
the single feature fl = "timing". The
aggregation function is A(cl,c2)=
0t(Cl,C2) and the context contains the
assumption that Cl = 0.5. The expert is
asked to score a match in which timing is
neutrally compatible, i.e., Cl = 0.5 for
varying intensities of i2 for "priority". If
"priority" is present with minimum
intensity (i.e., i2 = 0, the lowest possible
priority), then the aggregate matching
score is very low, say 0.1. This
assessment states the expert's opinion
that very low priority significantly
degrades the neutral effect of "timing".
Some other feature might have a less
significant effect. At neutral intensity for
"priority" (i.e., i2 = 0.5), the matching
score might be 0.5, implying that a
moderate priority has neither a positive
nor negative effect on the matching score.
The highest priority (i.e., i2 = 1.0) might
create an aggregate score of 0.8,
representing the opinion that high priority
has a strong positive effect on
compatibility. The data pairs [(0, 0.1),
(0.5, 0.5), (1.0, 0.8)] are included in the
new compatibility function C2. Additional
points may be provided to whatever
granularity is deemed necessary by the
domain expert.

The assumed context of aggregate
neutrality described above is appropriate
only if all features are compensatory.
Different assumptions are required for
non-compensatory features. If fl,
f2 fn is conjunctive with respect to
fn÷l, then the aggregate effect of
fl,f2 ,fn is assumed to be totally
compatible (i.e., A(cl,c2 Cn) = 1.0).
In this case, A(cl,c2 Cn+l) =
MIN(A(cl,c2 Cn), Cn+l) = MIN(1.0,
Cn+l) = Cn+l. Hence, the aggregate effect
of fl,f2 fn÷l is dominated by fn+l, as
desired. In this case, the matching scores
provided by the expert represent the new
feature's strength to displace the total
compatibility of fl fn.

Disjunctive features are handled by

assuming that fl,...fn are present with
minimal compatibility, and the matching
score represents the new feature's

strength in displacing the minimal
compatibility of fl fn.

In the general case, where all three modes

of interaction ma.y be present in fl fn,
the context reqmres all three forms of
assumptions. For example, suppose that
the feature f4 = "timing" is added to an
existing knowledge base containing fl =
"manual-match", f2 = "permits-parallels"
and f3 ="priority". The modes of
interaction among these features is shown
in Figure 4. The context for defining C4
consists of the following assumptions:

(1) f3 exhibits neutral compatibility (the
parallel has moderate priority, i.e., c3
= 0.5);

(2) f2 exhibits total compatibility (the
primary permits parallel science, i.e.,
c2 = 1);

(3) fl exhibits total incompatibility (a
manual match is not requested, i.e.,
Cl = 0).

It is easily verified that under these
assumptions A(cl,c2,c3,c4) = C4(i4),
hence by describing the overall
compatibility with variances in the
intensity of f4, the expert expresses a
compatibility function for f4.

The method described above is a heuristic

for approximating compatibility
functions. The degree to which the
defined function actually represents the
true effects of a feature depends on how
closely the feature's general behavior is
modeled by its behavior under the
assumed constraints. In certain cases,

more restrictive assumptions (such as
assigning specific measurement values to
certain features) are necessary in order for
the context to make sense to the domain

expert [Luc90]. Other heuristics are
possible, but in practice the above
strategy has worked satisfactorily.

7.2 Changing existing knowledge

Any of the existing knowledge functions
may be modified incrementally. Most

42

commonly, changes are made to
compatibility functions in order to fine-
tune the relative effects of features.

Suppose, for example, that the scheduler,
upon review of many matches, decides
that POMS is underscoring matches in

which p has a large excess of time
available for parallel science (as in the
example of Section 6). This deficiency is
easily addressed by dampening the
negative values defined for such cases in
the "timing" compatibility function. For
instance, the last entry in the function
definition (Table 4) might be adjusted
from (1.0, 0.25) to (1.0, 0.30), thereby
lessening the worst case effect of the
feature. The second-from-last entry might
also be modified slightly from (0.9, 0.42)
to (0.9, 0.45). Using this modified

compatibility function for "timing", the
example in Section 6 would yield a
matching score of 0.602, somewhat
higher than the original score of 0.556.
Changes to intensity functions (reflecting
a reassessment of a feature's semantics)
are made in a similar manner.

Currently, such changes are made by
manually editing a file that contains the
knowledge base, although an interface is

planned that will permit such changes to
be made interactively by the scheduler.

Changes in the way features are believed
to interact are made by rewriting the

aggregation formula in the knowledge
base file. Changes to a feature's
measurement function usually involves
the recoding of the CLOS procedure that
implements it. This requires intervention
by Spike system developers.

Features may be deleted from the
knowledge base simply by removal from
the argument list of the aggregation
function.

8. Results

Since the HST parallel science program is
still in the early testing stage, it is too
early to make conclusive statements about
the performance of POMS. Currently the
system has been used successfully to

verify matches made by human
schedulers. POMS has also been

employed to analyze the frequency of
good matches in a large pool of proposals
to be executed in 1992. Although much

improvement is required before POMS
can assume a more autonomous role in

scheduling, the system's rate of
improvement has been highly
encouraging thus far.

The most apparent strength of the system
in this early phase (during which it has
been subjected to frequent changes in the
matching criteria) has been its capability
for incremental refinement. The

explanation facility has been quite useful
in identifying assessment errors and
these errors have, in most cases, been

easily corrected by adjusting a
compatibility function. Furthermore, the
corrections have, in almost all cases, been
made without destroying the prior
integrity of the knowledge base, i.e.,
without inwtlidating previously correct
assessments. This same amenability to
local refinement was also observed in the

previous application of the technique
[9,10] and seems to be a generic
advantage of the approach. As the human
knowledge sources for POMS become
more familiar with the parallel science

problem, we expect that POMS will .be
able to represent and use this expertise in
an accurate fashion.

There is no particular dependence
between the POMS methodology and the

parallel science problem. Hence, if
successful in the present arena, the
knowledge representation scheme should
be applicable to other problems involving
the assessment of multiple quantitative
criteria. We are currently investigating
several potential applications, including
the detection of duplicate scientific
requests in the HST proposal pool, and
the matching of scientific observations to
point spread functions for image
restoration.

43

Acknowledgements

The parallel science evaluation criteria
were originally identified by Mark
Johnston of the STScI Science

Engineering and Scheduling Division.
Jim Mainard, John Baum, John Isaacs
and Brian Ross were instrumental in

developing the POMS knowledge base.
The author is particularly grateful to
Glenn Miller, Jeffrey Sponsler, Tony
Krueger and Mark Giuliano for many
useful suggestions and for their careful
readings of the draft.

References

Cheng Y. and Kashyap R. L. (1988). An
Axiomatic Approach for Combining
Evidence from a Variety of Sources.
Journal of Intelligent and Robotic
Systems, 1, 17-33. [Che88]

Gerb A. (1991). Transformation Reborn:
A New Generation Expert System for
Planning HST Operations, Telematics
and lnformatics, to appear. [Ger91].

Johnston, M., Miller, G., Sponsler, J.,

Vick, S., and Jackson, R. (1990). Spike:
Artificial Intelligence Scheduling for
Hubble Space Telescope". In S.L.
O'Dell (ed.). Proceedings of the Fifth

Conference on Artificial Intelligence for
Space Applications (pp. 11-18). NASA
Conference Publication 3073. [Joh90a].

Johnston, M. (1990). SPIKE: AI
Scheduling for NASA's Hubble Space
Telescope. In Proceedings of the Sixth
IEEE Conference on Artificial Intelligence
Applications (pp. 184-190). Los
Alamitos, California: IEEE Computer
Society Press. [Joh90b]

Kinney, A. L. and Blades, J. C. (Eds.).
(1991).The First Year of HST
Observations. Space Telescope Science
Institute, Baltimore, Maryland. [Kin91].

Lucks, M. and Gladwell, I. (1992).
"Automated Selection of Mathematical
Software, ACM Transactions on

Mathematical Software, 18 to appear.
[Luc92].

Lucks, M. (1990). A Knowledge-Based
Framework for the Selection of

Mathematical Software, Ph. D.

dissertation, Dept. of Computer Science,
Southern Methodist University. [Luc90].

Miller, G., Johnston, M, Vick S.,

Sponsler, J., and Lindenmayer, K.
(1988). Knowledge Based Tools for
Hubble Space Telescope Planning and
Scheduling: Constraints and Strategies.
Telematics and Informatics , 5, 197-212.
[Mi188].

Miller, G. and Johnston, M. (1991).

Long Range Science Scheduling for the
Hubble Space Telescope, Telematics and
lnformatics, to appear. [Mil91]

Silvert, W. (1979). Symmetric
Summation: A Class of Operations on
Fuzzy Sets. IEEE Transactions on
Systems, Man and Cybernetics 9(10),
657-659. [Si179]

Taylor, D. K., Reinhard, K. E.,
Lanning, H. H. and Chance, D. R.
(1991). The Scheduling of Science
Activities for the Hubble Space
Telescope. In A. L. Kinney, J. C. Blades
(Eds.). The First Year of HST
Observations (pp. 281-287). Space
Telescope Science Institute, Baltimore,
Maryland. [Tay91]

44

Monitoring�Control�Diagnosis

45

Coordinating Complex Probleln-Solving Among Distributed Intelligent Agents

ABSTRACT

^

J .,:

N9 2 - 23 360
Richard M. Adler

Symbiotics, Inc.

875 Main Street _7. _ / /

Cambridge, MA 02139

/

J
Interactions among distributed

This paper describes a process-oriented control

model for distributed problem-solving. Tile model

coordinates the transfer and manipulation of in-

formation across independent networked applica-

tions, both intelligent and conventional. The model

was implemented using SOCIAL, a set of object-

oriented tools for distributed computing. Complex

sequences of distributed tasks are specified in terms

of high-level scripts. Scripts are executed by SO-

CIAL objects called Manager Agents, which realize

an intelligent coordination model that routes indi-

vidual tasks to suitable server applications across

the network. These tools are illustrated in a pro-

totype distributed system for decision support of

ground operations for NASA's Space Shuttle fleet.

Keywords: distributed control, intelligent coordi-

nation, distributed artificial intelligence

INTRODUCTION

End-user tasks in distributed systems typically de-

compose into sequences of interactions between in-

dependent applications. For example, scheduling

engines are often driven by task, resource, and con-

straint networks derived from independent planning

systems. Scheduling a space mission may therefore

depend on a succession of individual data transfers

and manipulations across several decision support

tools and databases. Similar task decompositions

arise in operations support for complex control net-

works such as the Space Shuttle Launch Processing

System (Adler, 1990).

applications

and data stores nmst be initiated and managed. In

the absence of direct interprocess links, human in-

tervention is required t.o effect transfers of data and

control. Such involvement, whether by end-users or

supporting network operators, impacts the produc-

tivity and cost of frequent, high-level activities such

as decision support. Moreover, the likelihood of hu-

man errors may compromise quality and safety.

Intelligent systems have the capacity to coor-

dinate distributed problem-solving autonomously.
ttowever, considerable latitude exists in design-

ing architectures for distributed intelligent control

(Bond and Gasser, 1988). For example, interac-

tion sequences can be automated piecemeal, by es-

tablishing directed, data-driven control links be-

tween individual applications. Distributing sequen-

tial control logic in this manner is cund)ersome in

application networks that address multiple com-
plex tasks. Moreover, directed links arc difficult to

maintain, extend, and verify when network applica-

tions and tasks are added or modified with any fre-

quency. Finally, highly distributed control schemes

incur processing overhead to ensure focus and co-

herence of autonomous problem-solviug activilies.

This paper describes a process-oriented model
for distributed coordination. The model enables

complex sequences of distributed tasks to be spec-

ified in terms of high-level scripts. Each script el-

ement represents a distinct data transfer task or

request for problem-solving skills between comple-

mentary applications. The model also encompasses

intelligent control modules that execute these pro-

cess scripts automatically: individual tasks are
routed to suitable distributed servers and results

47
P_CEDING PAGE" F:t_AN_ NOT F_:,_JlED

are retriew_d for tile requesting applications. This

model alleviates many of the difficulties faced by
more decentralized coordination schemes.

The new process control model was imple-

mented as an extension to SOCIAL, a development

tool for distributed compu t.ing across heterogeneous

hardware and software environments. The next sec-

tier, of the paper reviews SOCIAI,'s architecture

and functior, ality. The following section describes

the design and implementation of the process con-

trol model. The model is then illustrated with

a prototype distributed system for decision sup-

port of Space Shuttle fleet ground operations at the

NASA Kennedy Space Center.

OVERVIEW OF SOCIAL

SOCIAl, consists of a layered collection of object-

oriented tools for distributed communication, data

management, and control (cf. Figure 1). These

generic capabilities are bundled into active objects

called Agents. SOCIAI, provides an extensible li-

brary of predefined Agent. classes with specialized

integration and coordination behaviors. An ap-

plicat.ion is linked non-intrusively to an Agent via

calls to a high-level Application Programming In-

terface (APl). Applications nmke APl calls to in-

voke their mediating Agen! ol)jects to execute de-

sired distrit)uted behaviors. Agents interact us-

ing asynchronous message-passing. SOCIAL's un-

derlying layers transparently manage interprocess

IlleSsage COlllllUlllicatioll across heterogeneous]all-

guages, operating systmlls, and networked hard-

wart, platforms (Symbiotics, 1990).

t Application)

Application l/ Development Interface3

Agents .4/ ' Agent
Agent Library ride v)

SfX;IAL __ [(Managers, Gateways) [...l_erface_empmem
Netw°rkandProces.,or, _ J Data Management I

.Software Platform] _

I"igure 1: Architecture of SOCIAL

SOCIAL Gateway Agents

SOCIAL Gateway Agents provide a uniform design

model and methodology for integrating heteroge-

neous applications, both conventional and intelli-

gent (Adler, 1991b). The root Gateway Agent class

defines a full peer-to-peer control model that is in-

herited by all specialized Gateway subclasses. This

model invokes a set of Agent methods in a data-

driven manner to process: (a) outgoing messages

from the Gateway's associated application to other

Agents; (b) incoming messages from other Agents;

and (c) responses to prior outgoing messages.

An application is integrated by creating a new

Gateway subclass, which involves specializing two

sets of Agent methods. One set establishes custom

mappings for application-specific data models and

control interfaces. To simplify interactions between

heterogeneous applications, SOCIAL transports in-

formation in a neutral exchange format. Accord-

ingly, each Gateway subclass must define conver-

sion methods for translating from the application's

native knowledge representation model and com-

mand interface into SOCIAL's neutral data format,

and vice versa. Native and neutral exchange data

structures are accessed and manipulated using func-

tions from the application's programmatic interface

and the APl for SOCIAL's data management layer.

The second set of Gateway methods defines the

application's desired interactions with other ele-

ments of the distributed system. These control

methods are constructed using the Gateway con-

version methods for extracting data and knowledge,

injecting information, or invoking application com-

mands, as required. One method establishes server

behaviors, which process incoming messages from

other application Gateways and generate suitable

responses. A second method defines client behav-

iors. Applications configured as clients initiate out-

going messages containing service requests via their

Gateways. A Gateway client behavior typically in-

jects responses to previous request messages back

into the associated application for follow-on pro-

cessing. A given application Gateway can sup-

port multiple client and server interactions with any

number of other application Agents.

48

SOCIAL Manager Agents

SOCIAL Manager Agents provide predefined con-

trol models for coordinating activities in com-

plex networks of application Agents. Coordination

among distributed problem-solvers can be achieved

through different strategies. One approach is to dis-

tribute control, localizing it within individual appli-

cations. A second approach is to centralize control,

either in a preferred application or in a dedicated,

independent module. SOCIAL Gateway Agents

provide flexible vehicles for implementing either of

these opposing alternatives. Manager Agents were

developed to support a third design strategy, which

is to combine localized and centralized control into

hy_rld coordination architectures.

The first SOCIAL Manager Agent defined a hi-

erarchical, distributed control (HDC) model (Adler,

1991a). This HDC-Manager mediates interactions

among autonomous "subordinate" Agents much

like a human manager. Application Gateways com-

municate exclusively with their Manager Agent, re-

questing information or problem-solving resources,

and receiving responses to those requests. Subor-

dinate Agents do not need to know about the fimc-

tionality, structure, or even the existence of other

application Agents; they only need to know (a)

the high-level API for interacting with the HDC-

Manager and (b) the names of the services available

within the ItDC-Manager's scope.

The basic operational model for the HDC-

Manager is summarized in Figure 2. The [IDC-

Manager functions as an intelligent router of task

requests, based on a directory knowledge base. This

directory describes: (a) individual information re-

sources and problem-solving capabilities; (b) the

application Agent that supports each such service;

(c) the message format for requesting that service;

and (d) the server Agent's logical address. Request

messages from application Gateway Agents are

posted to the HDC-Manager's agenda queue. The

llDC-Manager processes and dispatches requests

asynchronously to suitable server application Gate-

ways. These Agents, in turn, post responses from

their applications to the HDC-Manager's "bulletin-

board" database. The HDC-Manager subsequently

retrieves such responses and forwards them back to

the original requesting Agents.

[!fmr,,h,;:y RO,,t.r 3!
|],Agenda _Bulletin- l]t,,........................,j

response

Figure 2: HDC-Manager Operational Model

In essence, the HDC-Manager establishes a

layer of control abstraction that decouples appli-

cation Gateways from direct connections with one

another. The centralized directory promotes main-

tainability and extensibility over the evolutionary

lifecycle of complex distribllted systems.

SOCIAL'S PROCESS-PLANNER AGENT

SOCIAL's HDC-Manager Agent supports simple

interactions between independent distributed sys-

tems. For example, an intelligent scheduling

tool might query a remote shop floor production

database to determine the availability of equipment

or labor resources. Similarly, an intelligent opera-

tions support application for a power management

system might collect data to confirm a power bus

fault hypothesis, or command an experiment man-

agenaent system to minimize power consumption.

The applications in these examples are loosely

coupled. The scheduler uses the database solely

as a source of current status information about its

target domain. Similarly, operation management

systems only interact in situations where the struc-

tural and functional interfaces between their target

subsystems appear to be relevant. Simple discrete

transactions (e.g., query-response, sensor polling,

cornmand-acknowledgment interchanges), provide

45

sufficientcouplingto enabledistributedproblem-
solvingactivities in thesecontexts. The HDC-

Manager Agent contains all of the apparatus and

control functions required to coordinate discrete

transactions within a distributed system.

However, many kinds of distributed problem-

solving activities cannot be accomplished within

the scope of an individual logical transaction be-

tween two remote applications. Consider, for ex-

ample, a distributed decision support system com-

posed of two or more independent tools, such as a

planning system and a scheduling engine. Suppose

that the planning system incorporates the master

database for all decision support information, in-

cluding all operational plans and schedules for the

target domain. Assume also that the models used

to represent data and knowledge are incompatible

across the two tools, which is common for indepen-

dent systems specialized to solve different problems.

In this context, an elaborate set of information

and control exchanges has to take place to perform

scheduling. Data must be extracted from the plan-

ning system's database, transferred to the sched-

uler, translated into a format that is compatible

with the scheduler, and then loaded. At this point,

the primary scheduling activity itself can proceed.

Once scheduling has been completed, a similar set

of support transactions must be accomplished in

reverse order. The completed schedule must be

translated into a format acceptable to the plan-

ner, transferred back to the planner's host platform,

and incorporated into the master decision support

database.

Clearly, such sequences need to be automated,

both for end-users and for autonomous manage-

ment systems. It should be possible to invoke

scheduling or comparable functions through sim-

ple, high-level commands. Such commands should

specify only the few data items that are required

to characterize particular instances of the desired

task type (e.g., a mission identifier, options to over-

ride default control parameters for the scheduling

engine). This amounts to a requirement to auto-

mate composite activities, or processes, composed

of multiple discrete interactions between indepen-

dent distributed applications. The HDC-Manager

Agent currently lacks the requisite capabilities ei-

ther to define such distributed problem-solving pro-

cesses or to coordinate their execution. We consid-

ered several design approaches to extend SOCIAL

to provide the desired functionality.

One alternative would be to configure a dis-

tributed system so that one message would initiate

the desired activity sequence by triggering the first

application Gateway to perform its assigned task,

pass the results onto a second Gateway to perform

the second required task, and so forth. In other

words, a single message to the first server Agent

would automatically initiate the desired chain of in-

teractions. SOCIAL's communication layer main-

tains a "travel log" for each message as it is passed

through Agents. Once the "terminal" Agent com-

pletes its activities, results are automatically re-

turned and post-processed through all preceding

Agents that appear in the message's log.

Unfortunately, the logic for parsing and for-

warding messages within individual application

Gateway Agents can become quite involved for

complex processes. Moreover, a given application

Agent may have to perform a given function within

multiple process sequences, with different successor

Agents and post-processing activities for each dis-

tinct chain. Maintainability and extensibility are

compromised in that each time a new process is de-

fined, the control logic for Gateway Agents in that

process chain must be modified. Consequently, for

mission critical applications, the entire suite of be-

haviors for each affected Agent has to be verified

again. Finally, SOCIAL's communication model

only supports acyclic message forwarding, preclud-

ing processes involving "back-and-forth" exchanges

or iterative looping.

A second alternative would be to extend the

HDC-Manager directly to support the specification

and execution of distributed sequential processes.

On this strategy, special "macro" tasks would be

definable in the HDC-Manager's directory knowl-

edge base, corresponding to composite processes.

A message requesting execution of such a com-

posite task would activate extended control logic.

5O

This logic would decompose macro tasks into con-

stituent service requests and post individual steps

to the task agenda, in suitable order, for the IIDC-

Manager to process and route.

This approach resolves the objections raised

against the previous design strategy. First, mes-

sages are only passed between the extended llDC-

Manager and individual application Agents, elimi-

nating the hardwiring of interaction sequences di-

rectly into the control logic for individual Gate-

ways. Second, the new macro processes are modu-

lar, maintainable, and readily extensible. In partic-

ular, processes are modeled independent from and

external to individual application Agents. System

testing is simplified because new processes call now

be defined without affecting previously verified pro-

cesses and Agent behaviors. Finally, tile extended

llDC-Manager mediates all interactions between

application Gateways as separate message trans-

actions. SOCIAL's acyclic message-passing model

can accommodate cyclic behaviors that are broken

tip ill this manner.

The main objections to extending the HI)C-

Manager are performance and complexity. This

Agent's primary design role is to eliminate direct

connections between application Agents by medi-

ating interactions. The proposed fimctional exten-

sions decompose macro tasks and manage queueing

of process subtasks. These capabilities for man-

aging distributed processes impose computational

overheads that reduce the responsiveness of this

core routing capability. Moreover, these design ex-

tensions also complicate the original control logic

of the llDC-Manager significantly.

We adopted a third approach, which distributes

the functionality of the extended llDC-Manager to

overcome these design problems. Specifically, cen-

tralized process definition and management filnc-

tions are retained, but decoupled from the IlDC-

Manager and assigned to a new subcla-ss of Manager

Agents called Process-Planners. The distributed

control model realized in the Process-Planner is

then configured to drive tile tl DC-Manager through

the individual process steps comprising colnposite

activity sequences. It does this by posting succes-

sive service requests to the liDC-Manager's agenda

for distributed routing. This basic architectural

configuration is depicted in Figure 3.

[++:M..,]
@
request next
process step

0
A'° f

Pr°¢ess PlLLrt l]Proces_.]Planner]

Gateway Agent i]

_g"-App!!¢atio, ,i -)l

" "task results] "

_, { srtep r_Pdlts I
Gateway Agent

,(Al_'plicati°n'2' 2)]

I:igure 3: SOCIAl, Process (_'.onlr¢d Architecture

Tiffs (listril)ute(I design is at,tractiw, because it.

enables the Ill)C-Manag_'r to functioll i(h,mically

for two distinct distrihuled computing models -

transaction-base(I anti process-based. The l)rocess-

Planner manages process (tecoml)()sition and ac-

tivity sequencing. It transmits individual process

steps as individual service requests to tim Ill)C-

Manager, rel)licat.ing the type of inputs that wouht

be. expected frotn ordinary application Gateway

Agents. Consequently, the llDC-Manager need not

distinguish between discrete and composite service

requests within its agenda. In fact, process steps

and service requests representing (tiscrete Gate-

way transactions can I)e int.erh,aw,d on tim Ill)C-

Manager's agenda, enabling both kinds of inter-

actions to be coordinated concurrently. In addi-

tion, partitioning distrit>uIo(I conlrol h)gic across

two Manager Agents h)stors znodularity, maintain-

ability, and extensibility.

The nwssage tra|[ic t)(,lWeelS lhe I)roc['ss Plan-

m'r and Ill)(]-Managor entails sotI_,l)('rf()rnmn('_'

(:.verlmad.llowev_,r,the two Ag_,nts c_l_inmnicale

asynchroil(_tlsly _-liid c;iii op,nraI_" c()H,:'urrelllly on

dedicated i)rocessors, c()ml)ensaling at h,asl in i_art

for message-passing overhead. Ow'rall i)er['()rlllal.'_ '

depends strongly on the particular _listrihute, l sys-

tem and its ratio of cotnmullicati(ul al_d coordil_a-

lion to local apl)lication I+r()hl,'l,l-s,)lvitlg h);Ms.

51

Implementing the Process-Planner Agent

The Process-Planner Agent was implemented as a

subclass of SOCIAL Gateways. Consequently, it

inherits the standard Gateway peer-to-peer con-
trol model and API methods. These methods were

specialized to interface with the core process plan-

ning application. The data injection API method

parses two SOCIAL neutral exchange types. Char-

acter strings are interpreted as pathnames for files

containing process scripts, which the planning sys-

tem loads into memory. Lists are treated as com-

mands and command arguments, which are exe-

cuted through the application's control interface

(e.g., initialize, reset). Extensions to handle other

data types amount to straightforward program

Case statement clauses. The API method for ex-

tracting information was not required, because the

process planning system functions solely in a client
role.

Tile process planning application examines a

process script to determine the next step to per-

form. Currently, a script consists of an ordered

list of entries that correspond to services identi-

fied in the directory knowledge base of the asso-

ciated HDC-Manager Agent. The :compute-next-

step command retrieves the first script item that

has not been instantiated. All item has been in-

stantiated if it has been annotated with execution

results returned from the ItDC-Manager.

The planning program also computes prede-

cessors and successors to current steps in process

scripts. The HI)C-Manager supports a generic file

transfer service based on SOCIAL utility agents

that send and receive files across network nodes.

This service is context-sensitive in that it presup-

poses source and target file pathnames and host

names. The IlI)C-Manager can determine these

items given the previous and succeeding script steps

t.o the current file transfer task.

The Process-Planner Agent starts up the em-

bedded planning program in response to a mes-

sage that specifies initialize and reset commands,

together with the name of a script file to load. A

second message initiates the following control cycle:

1. the Agent determines the next process step

from the process planner program and dis-

patches a suitable service request message to

the HDC-Manager;

2. the HDC-Manager dequeues the request from

its agenda, finds the server application Agent

(e.g., a Gateway for a scheduling engine, a

Send-File utility), and dispatches an appropri-

ate task message to that Agent;

3. the target application Agent performs the as-

signed task and posts its response to the HDC-

Manager's bulletin-board. Typically, the tar-

get Agent is a Gateway, which interacts with

its embedded application by injecting data or

commands and collecting query or problem-

solving results;

4. the HDC-Manager automatically routes the

posted task results back to the Process-Planner

Agent;

5. the planning program updates the instanti-

ated script with service request results and

computes the next step from the script. The

Process-Planner dispatches this new process

step back to the ItDC-Manager for routing.

The Process-Planner then reiterates this exe-

cution cycle. The Agent terminates looping when

notified by its embedded process planning program

that the script has been completely instantiated.

The Process-Planner plays the role of a Man-

ager Agent in that it performs distributed control

functions rather than integrating domain-specific

applications. However, it was designed and im-

plemented as a subclass of Gateway Agents. So-

phisticated process planning tools are beginning to

appear commercially in CAE, CAM, and CASE do-

mains. These tools are used to specify task decom-

positions and automate control of work flows for

machining complex parts, other manufacturing pro-

cesses or managing large projects. The Gateway's

uniform, high-level interface architecture preserves

design flexibility to replace the SOCIAL process

planning program with a more powerful dedicated

engine.

52

Distributed Decision Support Prototype

A prototype was developed to validate this de-

sign model for coordinating processes in SOCIAL.

This prototype simulates a distributed decision sup-

port system for ground operations activities for the

Space Shuttle fleet at the NASA Kennedy Space

Center. Specifically, a Process-Planner Agent was

implemented and coupled to an HDC-Manager.

These two Agents automatically coordinate the

complex sequence of distributed activities required
to schedule Shuttle missions.

Two (simulated) decision support applications

were integrated using SOCIAL Gateway Agents

(cf. Figure 4). One Agent represents a commer-

cial planning system called Artemis, which NASA
has modified with a frontend interface customized

for planning ground support activities for Shut-

tle missions. The second Agent represents an in-

telligent, constraint-based scheduling engine called

Gerry (Zweben, 1990), which is being developed by
the NASA Ames Research Center. Artemis is based

on a proprietary fourth generation language and re-

sides on an IBM mainframe host. Gerry, written in

Common Lisp and CLOS, runs on Unix worksta-
tions.

The Artemis Gateway Agent is configured to

simulate three tasks: (a) downloading data files

for a particular mission from the Artemis master

planning database; (b) uploading data files rep-

resenting a completed mission processing schedule

back into Artemis; and (c) running an analysis pro-

gram to detect and report resource conflicts be-

tween the new schedule and existing schedules for

other Shuttle missions. The Gerry Gateway also

simulates three tasks: (a) translating and loading

mission plan files into the scheduler; (b) computing

the mission schedule; and (c) extracting and trans-

lating the completed schedule back into Artemis-

compatible file format.

The Gerry scheduler requires four types of plan

information: a network of tasks to be performed

to prepare the Shuttle vehicle and its associated

payload(s) for launch; a specification of available

resources (e.g., labor schedules, equipment such as

cranes, and other materials); a set of constraints on

tasks and resources; and a data dictionary that de-

scribes the information fields in the preceding three

datasets. Artemis generates these datasets as four

ASCII files in a standardized record format. Gerry

requires data to be input from ASCII files in a cus-

tom object-oriented format.

Gerry Gateway ARTEMIS Gateway

Figure 4: Prototype Decision Support Gateways

SOCIAL's data management subsystem was

used to define custom neutral exchange data struc-

tures. Translators were written to map between
Artemis and SOCIAL data models and between

Gerry and SOCIAL data models (of. Figure 5).

The translators were hooked into the application

Gateway Agent interface API methods to perform

appropriate conversions of data file formats. Data

files are translated into neutral exchange format

structures in memory, and then written to new files

in the target converted format.

Artemis Data Model

(DBMS/4GL-based)

field-descriptors

SOCIAL NeutralExchange Model

task networks
constraints
resOUl_es

I Gerry Data Model

(LISP/CLOS-based)

Mission

Project Attributes

Fields _ Tasks
Task datasets

Relations

Constraint datasets Resonrce-pools

Resource datasets Milestones

Figure 5: Disparate Decision Support Data Models

A subclass of HDC-Manager Agent, called the

DSS-MGR, was created to coordinate interactions

53

between the two decision support applications (cf.

Figure 6). Three steps were required to specialize

the DSS-MGR Agent for this purpose. First, con-

ditions were defined for prioritizing agenda service

requests. The DSS-MGR sorts requests with re-

spect to an ordinal list of service types. Requests of

the same type are ordered by increasing values of a

numeric priority attribute. Second, the DSS-MGR

directory knowledge base was constructed. The di-

rectory identifies all services available from all ap-

plication Gateways subordinate to the DSS-MGR,

plus the generic file transfer capability. Both DSS-

MGR attributes are defined using the high-level

declarative API specific to HDC-Manager Agents.

Third, dispatching functions were written for each

directory service entry. These functions manipulate

data arguments contained in service request mes-

sages into a task message that the HDC-Manager

routes to the relevant application Gateway server.

DSS-Mgr Agent

(transfer-data-files)

(load-Artemis-data)

(Artemis-analyze-and-report)

File format conversions currently take place

within the load-Gerry-data and retrieve-Gerry-data

tasks. Once the various Agents are loaded and ini-

tialized, the mission scheduling sequence is initiated

through a simple message to the Process-Planner

Agent to compute the next step for a particular mis-

sion, such as STS-40. The Process-Planner Agent

then executes the control loop described in the pre-

vious section against the mission scheduling script.

All demonstration Agents and simulated appli-

cations were written in Common Lisp. The demon-

stration system can be run on a single platform or

combination of platforms that currently run SO-

CIAL/Lisp, including Apple Macintosh IIs, Lisp

Machines, and Unix workstations. The Agent Li-

brary is currently being converted to C, to run on

SOCIAL/C workstation hosts. A planned port of

SOCIAL/C to the IBM/VM environment will es-

tablish direct interprocess interfaces across main-

frames and workstations. NASA's distributed de-

cision support system can then be implemented on

the intended target platforms.

÷ II '
SOCIAL File

Transfer UUIity
Agents

(on each node)

Figure 6: Decision Support HDC-Manager Agent

Next, a script was written for the Process-

Planner Agent, defining the distributed process for

scheduling Shuttle missions. This sequence consists

of the following steps:

(retrieve-Artemis-data)

(transfer-data-files)

(load-Gerry-data)

(schedule-mission)

(retrieve-Gerry-data)

FUTURE DIRECTIONS

The Process-Planner Agent is being redesigned

with extended functionality. The original planning

program only supports simple sequential scripts.

These scripts cannot specify data-driven processes,

in which successive steps are determined dynam-

ically at runtime, contingent on the results of

preceding process steps. Moreover, the initial

Process-Planner drives the HDC-Manager to ex-

ecute script steps individually, in a strictly syn-

chronous, "execute and wait" sequence. Ideally,

the Process-Planner should be able to request the

HDC-Manager to route all script activities that are

mutually independent within a single control cycle.

To overcome these limitations, a more expressive

scripting language will be developed for specifying

processes that incorporate conditional branching,

iteration, and concurrent tasking. The Process-

54

Planner's control logic will be extended accordingly.

A capability for executing multiple scripts simulta-

neously will also be added.

A second set of enhancements will provide more

formal development tools for creating and manag-

ing script libraries, replacing the ad hoc techniques

used in the prototype Process-Planner. A menu-

based editor will be developed to access and manip-

ulate process scripts. Also, scripts will be stored in

a central database of process plans rather than in

an arbitrary collection of independent files.

Other development efforts will extend SO-

CIAL's library of Manager Agents. The current

HDC-Manager is adequate for distributed systems

in which a single application Agent represents the

unique source for a given resource or service. How-

ever, additional control requirements arise for ap-

plication networks in which multiple application

Agents can provide data, knowledge, or problem-

solving skills redundantly. For example, identical

copies of a program may be available on several

nodes. In addition, some applications may have

overlapping functionality for planning, scheduling,

or other tasks. A dedicated "Server-Group" Agent,

inspired by the ISIS model for group-based tasking

(Birman, 1990), is being designed to address dis-

tributed control issues for functionally redundant

application networks. Like the Process-Planner,

this Agent will be configured to offtoad new con-

trol capabilities and work cooperatively with the

HDC-Manager. Specifically, the Server-Group will

monitor availability of server Agents, determine the

best server for a task, and enable redundancy-based

approaches to fault tolerance.

RELATED WORK

Alternative frameworks for developing heteroge-

neous, distributed intelligent systems include ABE

(Hayes-Roth, 1988), MACE (Gasser, 1987), Agora

(Bisiani, 1987), and Cronus (Schantz, 1986).

MACE incorporates dedicated manager agents for

centralized routing of messages among applica-

tion agents. However, MACE managers lack tim

other capabilities of SOCIAL HDC-Managers, such

as shared memory, transparent returning of mes-

sage responses, and extensibility for multi-level

control hierarchies. Like SOCIAL, ABE, Agora,

and Cronus all provide virtual environments to

shield users from platform dependencies and net-

working mechanics. However, they do not im-

plement generic distributed services in uniform,

object-oriented layers that are accessible to devel-

opers for customizing. Agora relies on communi-

cation through shared-memory, reflecting its ori-

entation towards parallel multi-processing architec-

tures. The other tools use message-passing models

comparable to SOCIAL. ABE and Agora provide

predefined control frameworks such as data flow

and blackboard models. Unlike SOCIAL Manager

Agents, these models explicitly couple individual

applications directly to one another. Moreover, het-

erogeneous SOCIAL Manager Agents can be con-

figured to work together cooperatively. It is unclear

whether the other tools support such combinations

within a given distributed systems.

The literature on distributed artificial intelli-

gence (DAI) contains many interesting architec-

tures for cooperative problem-solving, including

blackboard systems, contract nets, and collections

of autonomous agents (Bond and Gasser, 1988). In

this context, cooperation refers to loosely-coupled

networks of intelligent Agents working to solve a

single complex problem through collective action.

Most such DAI architectures rely on purely local-

ized control models duplicated across homogeneous,

autonomous agents. These designs can be repli-

cated within the generic communication and con-

trol model provided by SOCIAL Gateway Agents.

More recent DAI research focuses on theories

of cooperatiou for open-ended systems composed of

arbitrarily heterogeneous applications (Gasser and

tluhns, 1989). The critical problem here is to de-

sign dynamic interaction protocols for co,nmuni-

cating self-descriptive goals, plans, and intentions

among agents with radically different knowledge

and perspectives. SOCIAL Managers currently ad-

dress more modest closed-world domains, in which

the resources available in an agent uetwork are spec-

ified a priori and statically. A synthesis of Man-

ager control models with dynamic interaction pro-

totals could contribute to a powerful theory of co-

operation for open networks of autonomous agents:

agents and their resources could be registered dy-

namically in the context of a partially centralized

control architecture that mediates agent interac-

tions.

CONCLUSIONS

SOCIAl, applies a highly modular, non-intrusive

object-oriented approach to simplify the design

and implementation of complex distributed sys-

tems (of. Figure 7). High-level Agent AP[s parti-

tion generic distributed computing and application-

specific functionality. Gateway Agents provide a

uniform methodology and design architecture for

integrating heterogeneous applications, both intel-

ligent and conventional. Manager Agents provide

high-level distributed control building blocks for ty-

ing application Gateways together. Coordinating

via Managers eliminates direct connections between

individual application Agents that are difficult to

maintain and extend.

Manager Agent

Shared memory

Directory of services

Task allocaUen

Routing / Dispatching
External Interfaces

Server_group Agent i

Health monitoring

Fault tolerance

Task allocation
(redundant servers)

: Processp!annerhgent]

Activity sequencing]

.... Gateway Agent]

Application Integration]

Figure 7: SOCIAl, l.ibrary Buihting Blocks

'rim prototype distributed decision support sys-

t,elll described earlier illustrates cal)abilities for:

• integrating independent planning and schedul-

ing engines across a computer network;

• automating distributed interprocess commu-

nication, namely "fine-grained" exchanges of

data and control between remote executing ap-

plications;

n

automating conventional "coarse-grained" in-

teractions such as file transfers across dis-

tributed application platforms;

automating the coordination of complex se-

quences of fine- and coarse-grained interactions

between distributed applications through high-

level, declarative scripts.

The coordination capabilities provided by SO-

CIAL Manager Agents have broad applicability for

distributed intelligent systems in space-related do-

mains. For example, process scripts could be used

to coordinate routine shop floor activities. Task

control and work-in-progress status data could be

routed automatically among Shuttle and payload

processing facilities scattered across the Kennedy

Space Center complex. Similarly, shop floor statis-

tics could be collected, summarized, and transmit-

ted to higher-level decision support systems. Mis-

sion schedules could be monitored and managed

more effectively. This feedback could also be used

to tune the processing estimates that drive long-

term planning of Shuttle missions.

In addition, process scripts could be used to au-

tomate standardized launch processing and mission

control disciplines, enhancing productivity, safety,

and quality assurance. Beyond decision and oper-

ations support applications, process scripts can be

used to automate routine flows of information in

office automation and concurrent engineering con-

texts. Finally, process scripts can be applied in

space science domains for automating sequences of

data retrieval, analysis, and graphic visualization

activities. End-users could develop, maintain, and

extend their own application-specific scripts.

A cknowledgments

Development of SOCIAL has been sponsored by

the NASA Kennedy Space Center under contracts

NAS10-11606 and NAS10-11763. Artemis is a

trademark of Metier Management Systems. Monte

Zweben and Bob Gargan provided Gerry software.

Brad Young provided technical assistance relating

to Artemis.

REFERENCES

Adler, R.M. (1991a). A Hierarchical Distributed

Control Model for Coordinating Intelligent Sys-

tems. Proceedings of the 1991 Goddard Confer-

ence on Space Applications of Artificial Intelli-

gence. NASA CP-3103. pp. 183-198.

Adler, R.M. (1991b). Integrating CLIPS Applica-

tions into Heterogeneous Distributed Systems. Pro-

ceedings of the Second CLIPS Users Conference.

NASA Johnson Space Center. Houston, Texas,

September 23-25, 1991.

Adler, R.M. and Cottman, B.H. (1990). EXODUS:

Integrating Intelligent Systems for Launch Opera-

tions Support. Fourth Annual Workshop on Space

Operationsp Applications, and Research (SOAR-

90). NASA CP-3103, Volume 1. pp. 324-330.

Birman, K., Joseph, T., Kane, K., and Schmuck,

F. (1989). The ISIS System Manual VI.2. De-

partment of Computer Science, Cornell University,

Ithaca, New York.

Bisiani, R., Alleva, F., Forin, A., Lerner, R., and

Bauer, M. (1987). The Architecture of the Agora

Environment. In M. Huhns (Ed.). Distributed Arti-

ficial Intelligence. Morgan-Kaufmann, San Mateo,

California.

Bond, A.fI., and Gasser, L. (1988). (Eds.) Read-

ings in Distri6uted Artificial Intelligence. Morgan-

Kaufialann, San Mateo, California.

Durfee, E.H., Lesser, V.R., and Corkili, D.D.

(1989). Trends ill Cooperative Distributed Prob-

lem Solving. IEEE 7¥ansactions on Knowledge and

Data Engineering. 1(1), 63-83.

Gasser, L. and Huhns, M.N. (1989). (Eds.). Dis-

tri_uted Artificial Intelligence, Vol. II. Morgan-

Kaufmann, San Mateo, California.

Gasser, L., Braganza, C., and Herman, N. (1987).

MACE: A Flexible Testbed for Distributed AI Re-

search. In M. Huhns (Ed.). Distributed Artificial

Intelligence. Morgan-Kaufinann, San Mateo, Cali-
fornia.

ttayes-Roth, F., Erman, L.D., Fouse, S., Lark, J.S.,

and Davidson, J. (1988). ABE: A Cooperative Op-

erating System and Development Environment. In

A.H. Bond and L. Gasser (Eds.). Readings in Dis-

tributed Artificlai Intelligence. Morgan-Kaufmann,

San Mateo, California.

Schantz, R., Thomas, R. and Bono, G. (1986). The

Architecture of the Cronus Distributed Operating

System. Proceedings of the 6th International Con-

ference on Distributed Computing Systems.

Symbiotics, Inc. (1990, March). O_ject-Oriented

Heterogeneous Distributed Computing with Meta-

Courier. Technical Report, Cambridge, Mas-

sachusetts.

Zweben, M. and Gargan, R. (1990). The Ames-

Lockheed Orbiter Processing Scheduling System.

Fourth Annual Workshop on Space Operations, Ap-

plications, and Research (SOAR-gO}. NASA CP-

3103, vol. 1. pp. 290-295.

57

N92

Distributed Expert Systems for

-23 6:t

Ground and Space Applications

By: Brian Buckley, Interface & Control _ystems

Abstract

The workstation, minicomputer, and
microcomputer marketplaces have been
revolutionized in the past decade by systems that
are both open and distributed. As a leader in this
revolution, the Naval Research Laboratory's
(NRL) Naval Center for Space Technology
(NCST), has been employing reusable software
components to build a series of test beds, test and
checkout systems for satellite assembly line
operations, and distributed control of satellite
tracking stations. The Navy has taken this one
step further by unifying ground and space
operations with the development of the Spacecraft
Command Language (SCL).

SCL is a hybrid software environment borrowing
from expert system technology, fifth generation
language development, and multitasking
operating system environments. SCL was
developed by the Navy to be the controlling
software for their Advanced Systems Controller
(ASC). The ASC is a MIL-STD-1750A based

Telemetry, Tracking, and Control (TT&C)
controller for a new generation of Navy
spacecraft having the capability of autonomous
operation for up to 180 days.

Today's spacecraft are becoming increasingly
more complex, with added sensors, higher data
rates, and more capable standalone and
distributed processors. The SCL system allows
on-board processing of data, which has
traditionally been considered to be in the realm of
the ground segment. The distribution of
processing to the space segment allows the
spacecraft controller to analyze data points on-
board and make decisions based on knowledge
stored in the SCL scripts and rules.

In addition, the spacecraft bus and payload
systems are commonly developed independently,

Louis Wheatcrafl, Barrios Technology, Inc.

+

each having their own processors/controllers.
Using a common distributed control language
results in significant savings in total software
development. The space-based SCL system can
support distributed environments using a
hierarchical scheme allowing subsystem
controllers to communicate with a central
controller.

A distributed approach is also used with the
ground segment. Data points downlinked from
the spacecraft are routed to workstations that
analyze and view spacecraft and artificial
telemetry points in real time. The workstation's
knowledge base is used to analyze the telemetry
and adjust the spacecraft's high level tasking to
maintain the mission profile.

To unify the space and ground segments, the
NCST has chosen the SCL system as the standard
for use on-board the spacecraft as well as in the
ground stations. The SCL system will run on a
central ground station computer as well as on
individual workstations used for subsystem

monitoring and control. The SCL Real-Time
Executive (RTE) on-board the spacecraft will be
monitoring health and welfare, processing
telemetry, scheduling mission tasking, and
managing payload configuration changes.

Connectivity between multiple SCL nodes is not
limited to exchanges of database items. A
workstation can directly connect to any remote
version of the SCL RTE. This allows direct

control, interactive commanding, and real-time
query of the remote SCL RTEs. This direct
connect capability includes the version of the
SCL RTE on-board the spacecraft.

This paper presents the SCL concept of the
unification of ground and space operations using

a distributed approach, describes the SCL system,
offers examples of potential uses for the system,

PI'_CEDING PA_E BLANK NOT FILMED

59

SCL RTE

Crosslinks

f

SCL

Workstation

SCL

Workstation

SCL RTE

on Satellite

Ground and Space Network using SCL

and details current distributed applications of
SCL.

Introduction

The Naval Center for Space Technology (NCST)
is in the process of developing the Advanced
Systems Controller (ASC), which is a major
upgrade to its current microprocessor based
spacecraft controllers. The ASC hardware is
based around the Honeywell GVSC MIL-STD-

1750A processor and has been designed to be
general purpose to allow tailoring of the system to
meet the requirements of other spacecraft
programs. The ASC software is based on the
Spacecraft Command Language (SCL) Real-Time
Executive (RTE). SCL is a hybrid system that
employs a rule based event driven expert system
as well as a procedural scripting capability.

The SCL development environment consists of a
ground based windowed system used to develop
SCL scripts and rules. The integrated

environment consists of an editor, a compiler,
decompiler, tracing subsystem, explanation
subsystem, and the RTE. The SCL RTE was
designed to be portable and run in a real-time
embedded systems environment. The SCL RTE
represents the majority of the code necessary to
implement an embedded spacecraft controller.
The NCST saw the need for the integration of
ground and space operations with a common
control system using a single control language.
By using SCL in a distributed environment, the

command language for ground and space
segments share a common syntax. The SCL
grammar is based on fifth generation languages

and is very eng.lish-like, allowing non-
programmers to write the scripts and rules that
constitute the knowledge base. Because the
ground-based SCL environment uses the same
RTE as the spaceborne controller, scripts and
rules can be developed and debugged on the
ground-based RTE before requiring the spacecraft
hardware for final checkout.

6O

The NCST has incorporated a control system in
its ground stations for the past decade. This
control system has proliferated to integration and
test environments, and to many of the supporting
ground stations around the world. The SCL
system has been integrated with this control
system to provide additional, or "value-added"
capabilities to the existing systems. Besides the
goal of early deployment and checkout of the
SCL software, the NCST felt that the existing
ground stations could benefit from the expert
systems capabilities provided by the SCL system.

The existing NCST satellites are well
characterized and are managed by several
software components and Orbital Operations
Handbooks (0OH), which define configurations,
constraints, and contingency plans. This
knowledge can easily be translated into SCL's
scripting language. The resulting knowledge base
consists of SCL scripts, rules, and functions. The
knowledge base is used in real time to monitor
and detect changes in the vehicle configuration,
maintain the configuration, move efficiently from
one configuration to another, monitor system
health, and perform command verification. At a
ground station, copies of the SCL system are used
on workstations to analyze telemetry and drive
third party graphics products. The SCL
workstations are able to advise an operator of
anomalous conditions and suggest corrective
measures, compare the current configuration
against the desired mission tasking profile, and
provide a capability to autonomously maintain
vehicle configuration.

A New Way of Doing Business

In the past, only a ground-based command and
telemetry database needed to be managed. With
the advent of the ASC concept, the on-orbit SCL
database must also be considered. The field sites

throughout the world must also have knowledge
of the database items that are on board, as well as

the scripts and rules that are loaded on the ASC.
All ground stations must have knowledge of the
orbiting satellite's database.

The current generation of spacecrafthas a control

system used for ground operations, an embedded
control system for the spacecraft controller, and
hard-coded algorithms for specialized hardware.
Rather than use several different sets of software,

the NCST approach is to use the same SCL

software for spacecraft control functions as well
as for ground station control. The SCL system is
portable and has been designed to be used in
embedded systems as well as workstations and
minicomputers. This approach allows a common
SCL grammar to be used for the ground station,
the spacecraft controller, and payload controllers.

A major departure from the past and present
spacecraft control systems, is the concept of using
an existing, validated software "shell" for control
system development. In the past, it was felt that
each new spacecraft system needed a unique on-
board software controller. Thus a special team of
specialized programmers would develop a new
control system from scratch. This proved to be a
high risk as well as a very expensive approach
both in terms of cost and schedule. With the SCL

concept, the only unique software is the low level
hardware interface code, the database, and the
knowledge base. This approach has several
advantages:

• The development cycle can be shortened;
much of the code is "off the shelf".

• Risk is reduced. The SCL system has been
proven both on ground and on space

processors.

• The knowledge of a system is embedded in the
controller.

• The learning curve for ground station
operations is reduced since the knowledge is

captured on the system.

• Consistent operations. Tasking of the vehicle
is performed the same for both the ground and

space segment.

The scripting contained in the knowledge base is
written using a high level language that can be
easily learned and understood by the subsystem
engineers, thus not requiring a team of specialized

programmers.

Mission tasking has traditionally been based on a
time-line. At a given point in time the spacecraft
is commanded to perform a function.
Commanding can be carried out via stored
commands, and by interactive commanding from
the ground station. The time-line approach has
proven to be cumbersome and difficult to
administer. Previously, commanding was done
"blind"; no database was available on the

spacecraft for interrogation. With the availability

61

Database

Script/Rule Source

Operator Direct

DB Record

Development
Environment

Interactive Commands

_... Status and Responses
Real-Time

Engine

Actuator Commands

Telemetry Values

SCL System Dataflow

of SCL's scripting capabilities and flight GPS
receivers and other equivalent devices, an on-
board expert system that is performing real-time
monitoring of the current spacecraft position can
allow field of view tasking to be implemented.
The spacecraft can collect data when an area of

interest is in the field of view, and it can dump
stored data when a field site is within its field of

view. This approach can greatly simplify the
mission tasking definition and the reduce the need
for as many men in the loop.

The NCST envisioned using the SCL system on-
board the spacecraft to share the testing burden,
since it would be able to detect and isolate faults

and report them to the ground. Time saved
during the integration and test phase of the

pro.gram can result in significant monetary
savings. The capability to do self-diagnosis is
desirable since a low earth orbiting spacecraft
(LEOS) is in view of a ground station for only a
small percentage of its orbit.

SCL System Architecture

The SCL system consists of five major
components:

• The database describes digital and analog
objects that represent spacecraft sensors and
actuators. The latest data sample for each item
is stored in the database. The database also
contains derived items that are artificial
telemetry items whose values are derived from
physical sensors. Examples of derived items

could be: average temperature, power based on
current and voltage monitors, subsystem status
variables, etc. Data structures required to
support the Inference Engine are also stored in
the database. These items include command

actuators for commanding the spacecraft
systems.

• The development environment is a window

based application that includes an integrated
editor, the SCL compiler, decompiler, cross-
reference system, explanation subsystem, and
filing system. The development environment
is also used as a front-end to control the SCL

RTE. A command window is used to provide

a command-line interface to the Real-Time
Executive. Extensiveuseof pull down menus
anddialogsareusedto control thesystem.

• The RTE is the portable multi-tasking
command interpreter and inference engine.
This segmentrepresentsthe coreof the flight
software. This portion of the software is
available in both C andAda to allow easeof
porting to a specific hardware platform
(groundor space).

• The Telemetry Reduction program is
responsiblefor filtering acquireddata,storing
significant changes m the database, and
presentingthe changingdata to the Inference
Engine.

• Theprojectis thecollectionof SCLscriptsand
rulesthatmakeup theknowledgebase.On the
groundbasedsystems,the projectcontainsan
integrated filing system to manage the
knowledgebase. In thespaceenvironment,the
binary knowledge base is uploaded to the
spacecraftandstoredin memory.

Depending on the needs of the user, all
componentsof SCL can be run on a single
system,or may be distributed among systems.
The developmentenvironment can be used to
directly connectto a local or remoteversionof
theSCL RTE. This direct connectcapability is
also supportedfor the spacesegmentto allow
interactivecommandingandqueryof thesystem.

Fielding the System

Due to the power and the advantages provided by
SCL, the NCST decided to put the SCL system
into the field immediately for several reasons:

• Risk Reduction - prove the system is viable
through a series of proof of concept efforts.

• Capture knowledge of key personnel to allow
the system to aid integration and test efforts.

• Allow parallel development of knowledge
bases on workstations.

• Develop a concept for adaptive mission
tasking, and field of view commanding.

• Allow development of simulations for Air
Force and Navy Projects.

• Integrate SCL with existing systems to allow
value-added features.

The SCL system was put through its paces early
in its development cycle in a series of proof of
concept efforts. The Lab Test Bed proof of
concept used the SCL RTE on a UNIX platform
to control a prototype satellite. To demonstrate
the enhanced capabilities of SCL, the following
demonstrations were performed:

• SCL Satellite Configuration and Auto
reconfiguration. The goal of this
demonstration was to show SCL is capable of:

Transitioning from one control language to
another. This was demonstrated by

translating existing control system
command procedures into SCL scripts.

Commanding the spacecraft and receiving
_elemetry responses.

Detecting that the spacecraft is not in a
desired configuration and notifying the

operator.

Automatically reconfiguring the spacecraft
to a safe state in event of an error.

• SCL Commanding. The goal of this
demonstration was to show several SCL

capabilities:

Simple commanding and verification by
monitoring telemetry points to verify that
the command was successful.

Mission constraint checking by verifying
telemetry prior to a command being issued
to prohibit a potentially damaging command
from being sent.

Abstract commanding by using SCL's high
level commanding capabilities. Scripts are
used to check telemetry and manage
primary and redundant sides of boxes, and
allow a default side to be active.

Fault Tolerant Configuration. The goal of this
demonstration was to show the SCL capability
to react in real time to telemetry changes and
implement an alternate course of action if
conditions warrant. This demonstration used

redundant sides when the primary side did not
respond.

constraint HOT SWITCH

subsystem TRANSMITTER
category SWITCHING
priority 15
activation YES

if

(BIU_CROSS or BIU_NORM)
and

XMIT POWER = ON
then

reject
execute fault_log with constraint_err

end if

end HOT_SWITCH

SCL Constraint Example

Field of View Operation. The spacecraft
position coordinates are telemetry database
items and may have rules associated with
them. When a significant change in the
position data occurs, the rules associated with
them are executed. The rate that the position is
updated is determined by the desired ground
track accuracy. The field of view can be
calculated from the position coordinates and
compared to the area of interest. If the area of
interest is within the field of view, the rule may
execute scripts or sequences of commands to
change the spacecraft configuration.

Mission T_sking. The goal of this
demonstration was to highlight three tasking
aspects of SCL. First, SCL is required, at a
minimum, to reproduce the current capabilities
to schedule and activate various configura-
tions. Second, SCL is capable of a variety of
common cyclic functions that can be scheduled
within the SCL kernel. Third, SCL is capable
of multitasking. This multitasking capability
will reduce the time, effort, and complexity of
resolving the varied resource needs between

program entities. By supporting multitasking,
SCL can satisfy requirements from many
different sources.

Self-Testing. The NCST has designed the
ASC with a goal of improving testability. By
using the ASC processor as an asset for testing,
parallel testing can be accomplished. Having
an intelligent controller allows the system to
perform self-diagnosis, trouble shooting and

reporting of problems. SCL enhances testing
by providing a flexible and re-usable means of
implementing on-board testing. At the
subsystem level, scripts and rules can be
written to provide a test environment for a
specific subsystem. SCL can send commands
to the unit, and react to the telemetry responses
from the unit. This would provide a common
test method for many layers of the system,
allowing consistent testing throughout the
phases of system integration. At this level,
SCL supports command and telemetry
verification for each box.

-- This script prepares the Reaction Control
-- Subsystem for a thruster firing and calls a
-- subroutine script to perform the actual
-- firing. It accepts two parameters: one
-- indicating which thruster to use and
-- another specifying the duration of the firing

const fore 1 -- define a constant for the

-- forward thruster

script Maneuver1 thruster, duration

-- command to enable thrusting
set RCS ENABLE to ON

-- allow propellant flow
set TANK_ISO_VALVE to OPEN

if

thruster = fore
then

-- call Fore thruster subroutine

execute ManvFore with duration

else
-- call Aft thruster subroutine
execute ManvAft with duration

end if

-- command to disable thrusting
set RCS_ENABLE to OFF
-- command to isolate tank
set TANK ISO VALVE to Closed

end Maneuver1

64

SOL Script Example - Mission Tasking

Simulation. Frequently, in the production of
the spacecraft, there are subsystem components
that have not been integrated or are missing
due to troubleshooting or modification. In
their absence, test procedures have to be
modified or must be postponed until the
component is available. Having a simulator
for a missing component is desirable so test
procedures can be run without modification
and testing can proceed without the complete
system in place. In the event a particular box
is absent from the spacecraft, its presence
could be simulated by the SCL inference
engine, either operating in its embedded form
on-board the spacecraft, or in its ground
system form operating on the ground station
processor. To simulate a missing component, a
knowledge base must be developed to respond
to commands defined for the component.
When a command is sent to the component, the
associated rule is executed and a corresponding
telemetry response is generated.

rule BATT3 TEMP

subsystem EPS
category BATT3
priority 15
activation YES

if
BATT31T > 50

then
set alarmlevel of BATT31T to RED

execute battsafing with 3, priority = 30
end if

end BATT3 TEMP

SCL Rule Example

be capable of being used in embedded systems
(i.e., blown in PROM). The expert systems were
to be used to implement the flight algorithms for
NRL's upper stage used for orbital insertion of
satellites. The upper stage is spin stabilized until
it reaches the insertion orbit. Once in the desired

orbit, the upper stage is spun down and stabilized
using momentum wheels and reaction control
thrusters. The upper stage then jettisons the
spacecraft allowing it to move into its parking
orbit.

All aspects of the orbital transfer maneuver are
controlled by the Attitude Control Electronics
(ACE). The ACE subsystem is semi-autonomous
and can issue thruster commands to maintain the

desired attitude. The ACE control loops were
developed in the flight processor's native
assembly language. The development of the
algorithms required years of design, testing and
elaborate simulation. Within 3 months, two

prototypes were generated using SCL and the
COTS expert system. The two prototypes were
exercised using the same flight qualification test
used for acceptance testing of the original ACE
flight software.

The results of this effort proved that the COTS
expert system was NOT able to keep pace with
the flight control loops, resulting in additional
thruster burns to stabilize the spacecraft. The
knowledge base for the COTS expert system was
re-designed, but was still unable to keep up with
the control loops. The SCL system however,
performed the ACE algorithms as efficiently as
the flight software.

Based upon the successful demonstrations of the
SCL system, the NCST baselined the SCL
software as the control system for the Advanced
Satellite Controller. The system has also been
chosen as the control system for two NASA
projects, one of which will launch in September
of 1993.

Further Proving of the System

In another proof of concept, the NCST wanted to
test the expert system technology in a "real-
world" scenario. This proof of concept required
that the SCL system be compared to a
commercial off the shelf (COTS) expert system.
Both SCL and the COTS system were required to

Satellite Simulations

In the summer of 1990, the NCST was chosen to

provide spacecraft simulations for the Space
Defense Initiative Office (SDIO) Standard

Mobile Segment program. The NCST chose to
use the SCL system to provide command
response capabilities and electrical and thermal
modeling for the FLEETSATCOM and GPS

66

satellites. An SCL rulebasewas developedto
decode binary commands and insert an
appropriateresponsein the telemetrybit stream.
Telemetry from this bit streamwasdistributed
over Ethernet to Air Force contractor
workstations. The SCL systemwas integrated
with theNCST'sq"F&Csystemto allow real-time
simulationof commandresponses.Theelectrical
andthermalmodelswerealso developedaspart
of the SCL knowledge base. These models
providedadetailedemulationof thespacecraftin
real-timeor up to 600 timesreal-time.

The SCL simulations were developed on
workstationsanddeliveredon the hostcomputer
asastand-aloneentity. The systemwasactivated
from theTT&C system,andrunswith little or no
operator intervention. The only intervention
required is when anoperatorwishesto generate
anomaliesin a scenario.Thesesimulationshave
beendelivered to Air Force contractors,to the
National TestBed, andto the NAVSOC facility
atPt.Mugu,California. The NAVSOCpersonnel
currentlyusethesimulatorsfor FLEETSATCOM
training. In thenearfuture,theSCLsoftwarewill
be embedded in a high-fidelity hardware
simulationfor a NCSTprogram.

Integration with Existing Systems

Currently, the SCL system is completing its
integration with the NCST's ground station
software where it will become part of a client-
server model. The SCL system will reside on
several workstations as well as the ground
station's central computer. All communications
will be through a packetized message passing
protocol over Ethernet. The ground station
TT&C software is responsible for telemetry
decommutation and distribution. The SCL

workstations will monitor appropriate telemetry
to generate operator advisories and drive graphics
interfaces, which are used to indicate the

spacecraft configuration, health, and welfare.

The NCST tracking stations are taking advantage
of the distributed aspects of SCL using a network
of minicomputers and workstations. Once the
NCST's ASC is launched, the full potential of
SCL can be exploited. In addition to the ground-
based network, the spaceborne ASC platforms
will be capable of communicating with each
other. Ground stations will be able to perform the
central site load to one ASC. The ASC that is

loaded will be capable of forwarding the
applicable script, rule, and database loads to the
other ASC's. Since the ASC's can be in constant
communication with each other, the mission

tasking load can be balanced among the cluster of
ASC's. This concept of adaptive tasking will be
managed by the on-board SCL expert systems.
Each SCL knowledge base will know the
configuration of the on-board ASC, and can query
the other ASC's to obtain their current

configuration and tasking profile. Having this
capability will create a network of ground and
spaceborne SCL platforms. With the ability to
upload databases and knowledge bases, the
possibilities for this network are tremendous.

Reusable Controllers

Recently, SCL was chosen for a
commercialization of space contract funded by
NASA Goddard Space Flight Center. The
Autonomous Rendezvous and Docking (ARD)
satellites will use SCL to control docking and
fluid transfer experiments. The ARD satellites
will use off-the-shelf spacecraft computers based
on the 80186 chipset. The ARD satellites will be
low earth orbit satellites. The ground stations
will use SCL to monitor telemetry and send
commands. The two satellites will both be

controlled by an embedded version of SCL and
will communicate with each other during the
docking procedure through RF modems. When
the satellites are within a kilometer of each other,
one satellite will act as master, and the other as

slave. The SCL knowledge base on one platform
will be sending commands to control the
maneuvers of the other.

The same off-the-self spacecraft controller will be
used for a material processing experiment to be
launched as a NASA Get Away Special (GAS)
on-board the Space Shuttle. This captive
experiment will use SCL to control an oven and a
robot that will be used to place material samples
in an oven to.test the effects of annealing in a
weightless environment.

Lessons Learned

Development of a distributed expert system for
ground and space did not come without its share
of technical and psychological obstacles. The

86

following paragraphs give an overview of some
of our challenges.

Portability: The SCL system was originally
developed on a Macintosh II platform. The
Macintosh proved to be a highly productive
environment because of its integrated toolkit for

windowing, the operating system, and the filing
system. The software development tools
available on the Macintosh were the most

affordable and most sophisticated at the time. We
made great strides in the development of the
systems, but we were faced with the chore of
porting the system to other platforms. The NCST
tracking station uses the Digital Equipment
Corporation (DEC) VAX family of computers
and workstations running the VMS operating
system. The SCL code was originally written in
C, and we had to convert the real-time engine and
database loader to ANSI compatible C. We also
needed to support UNIX platforms and IBM PC
platforms. This required adding conditional
compilation statements for some of the include
files since paths are different.

To keep the core software identical on all
platforms, the operating system specifics and the
I/O have been abstracted to a very small number
of routines, which are replaced on each system.
These routines interface directly to the host
operating system to schedule execution, map
memory sections, and obtain systems time. The
low level I/O and network I/O is also handled in

this group of routines. This abstraction of I/O has
allowed the system to be easily ported to multiple
hardware platforms, operating systems, and real-
time executives for embedded systems.

Another major obstacle was communication
between local and remote versions of SCL on a

non-homogeneous network. Different machines
were either big-endian or little-endian (high byte
then low byte in memory, or vice-versa); they
also use different floating point formats. The
low-level I/O modules were modified to
determine the "sex" of the local and remote SCL

systems and perform any data transformations
necessary. The network I/O has been sufficiently
abstracted to allow communication via TCP/IP

and DECnet protocols over Ethernet, Appletalk,
serial communications such as RS-232, and

custom protocols.

We felt it was prudent to allow the spaceborne,
embedded version of SCL to perform native
access to all data structures including the

database, and the knowledge base. To allow the
embedded SCL to have native access, the ground
based development environment had to support a
cross-compilation of all data destined for a
remote version of SCL. By setting a software
switch, the data streams, and files produced, are
formatted in the target processor's native data
structures. The development environment is also
capable of decompiling the data streams from the
target platform.

Necessity vs. "Feature-iris": As the system
evolved, new features were added as needs and

requirements dictated. At one point we found
ourselves adding features because we thought it
would make the system "slick". As we found out,
new features and new code created side effects
that were not discovered without extensive

testing. We also found that many of the "slick"
features were difficult to duplicate on other
platforms, since they did not have an integrated
toolkit like the Macintosh. We were striving to
maintain a common look and feel for the product
across platforms. Because of the porting of the
code to multiple platforms, the system was
baselined (frozen) and only changed for
maintenance and bug fixes.

The SCL proofs-of-concept resulted in another
company providing an objective analysis of our
product. Our system was compared with
commercial products to test functionality as well
as real-time performance. As a result of the
comparisons, we added several extensions to the
grammar, and an additional user-selectable,
inferencing strategy. Other behavioral quirks
were also corrected. We did not however, add
more object oriented features due to the real-time
considerations. The SCL system is designed for
real-time embedded environments and pre-
allocates all data structures prior to startup. The
SCL RTE does not perform any dynamic memory
allocation due to memory fragmentation issues.
Traversing the data structures necessary to
implement additional object-oriented features
would degrade the real-time performance and
increase the memory requirements for the system.

Information Management: For past programs,
the spacecraft controller used a low-level
command-language and did not support an on-
orbit database. The ground statmn and test
systems were the users of a database. With the
introduction of the'ASC (with SCL on-board), the
ground sites as well as the spacecraft must

67

containcopies of the database.Additionally, a
core set of scripts and rules must also be
managed. In the past, it has beendifficult to
ensurethat all mission sites contain a database
whichdescribesthesamecommandandtelemetry
pointsasthecentralsite. Theprimecontractoris
now responsiblefor deliveringandconfiguration
managingdatabasesfor eachsite and platform.
Distribution of the databasesare from a master
databaseat a central site. All other sites'
databasesarederived as a subsetof the central
site'sdatabase.Thespacecraftdatapointsarethe
samefrom site to site, but the databasesat each
site can beextendedto include groundspecific
datapoints.

Currently the SCL development environment
compilesscripts,rules anddatabaserecordsand
assignsID's to each. Scripts,rules,anddatabase
recordsarereferencedby theseID's. To keepall
sitessynchronized,agivenID mustcorrespondto
the samescript, rule or data point at eachsite.
Thesituationis furthercomplicatedwhentheuser
references data points or scripts on another
platform or network node. Severaloptionsare
availableto guaranteethatan ID is uniqueamong
all nodesand platforms in the network. The
strongestcontenderasa solutionis to usea hash
algorithm to define the node and
script/rule/database item combination. This
schemeresultsin a 64-bit ID for eachobjectand
doubles the current size of the ID in tile SCL
intermediate code. In addition to the extra data

word requirement, several table lookups are
required to efficiently look up the address for the
data structures.

Another area of concern was how to distribute the

calculation of the artificial data points (derived
items). It was felt that the prudent approach was
to divide the derived item calculations between

ground and space. Rules are used to calculate
derived items and are defined on the appropriate
platform. Spaceborne derived items might be
used in calculations for attitude control, where

derived items would be used on the ground to

drive graphics displays. The ground derived
items are further distributed to workstations that

analyze telemetry for specific subsystems.

Windowing & Reusable Code: As prototypes
of the SCL system were ported to other platforms,
the amount of code was increasing rapidly. This
problem was complicated by the fact that the
windowing systems on each platform (Macintosh,

OSF/Motif, Microsoft Windows) behaved quite
differently from a programming viewpoint. We
estimated that a man-year would be required to

bring a programmer up to speed on each
windowing system to generate a production

quality application. We also saw that many
software functions were being replicated even
within the same programming team. It was at this
point we decided to port the SCL development
environment over to C++ to promote code
reusability and abstraction from the windowing
system specifics.

We saw four layers of class libraries that needed
to be defined. The foundation of the system is the

portable filing system layer and the database
management layer. The filing system layer
implements a class library modeled after the
Macintosh resource files. The filing system is

based upon a four character ASCII key that is
used as an index. Each key (or resource) can
contain variable length data structures identified
by a unique name and index. This filing system
is used to maintain a consistent interface across

all platforms.

The data management layer is based largely upon
the public domain National Institutes of Health
(NIH) class library. This class library manages
commonly used data structures: lists, sorted lists,
data blocks, strings, collections of objects, etc.
This layer is a simplified subset of the functions
contained in the NIH class library. Data

persistence is implemented to allow data
structures to be maintained in memory once they
have been read from disk. This has significant

performance advantages since the disk is only
accessed again when the file is closed, or the
programmer explicitly requests that the data be
written back to disk.

Abstraction: The SCL system was envisioned
from its inception to be applicable to other types
of controllers and other satellite programs. To

accomplish this, the system had to abstract the
specifics of the application from the knowledge
engineer. The grammar for SCL is a hyper-
scripting language that supports object-oriented
features. The object-oriented approach allows the
Real-Time Executive to treat Actuators, Sensors,

and Derived Items essentially the same way. All
decisions as to how to perform the I/O is deferred
to the lowest level interface routines. These

routines are the "glue" between the logical and

physical interfaces. This approach allows a few

hundred lines of code to perform any
transformation required by the hardware
interface. This approachallows identical scripts
to run both on workstations and the flight
processor. Both implement the same
functionality, but one could communicateover
Ethernet,while the other communicatedwith a
TI'&C bus, or an I/O card in the same chassis.

__ Application

Independent

pplicatlon

Specific
Layers

SCL Software Architecture

Abstraction is also the key to keeping the vast
majority of the SCL code portable. All operating
system specifics are isolated from the code in just
a few routines. These routines are replaced on the
target machine with calls to systems services
specific to that operating system.

Fear Of Artificial Intelligence/Expert Systems:
Perhaps the largest hurdle to overcome is an
inherent fear or apprehension of managers that
they do not want to lose control of their
spacecraft to a computer. They simply don't
want to accept the perceived risk, and are more
comfortable with the old or existing methods. To
overcome some of the initial negative reactions,
we have had to avoid the terms artificial

intelligence and expert systems. Instead we use
the term "Smart Control System". There is
probably a better term. The main points that must
be made are:

• Existing methods of ground up development
are just re-inventing the wheel and are more
risky because of the use of "new" and
unproven code. They are also more costly

because of the time to develop a controller
from scratch and because of the increased
schedule time.

• Rules are already embedded (hard coded) into
existing software. But because they are coded
by specialized programmers, it is difficult for
the subsystem engineers to review and
understand how their systems are being
monitored and controlled.

• As stated previously, the SCL system
employes the concept of using an existing
validated software "shell" for control system
development. With the SCL concept, the
only unique software is the low level
hardware interface code, the database, and the

knowledge base. The scripting contained in
the knowledge base is written using a high
level language that can be easily learned and
understood by the subsystem engineers, thus
not requiring a team of specialized
programmers. The rules that exist in the
traditional controllers are now structured as

individual items that are evaluated by the

inference engine. This structure makes it easy
for the subsystem engineers to review and
understand the how their subsystem is being
monitored and controlled.

• The amount of control given to the SCL
system can vary depending on the needs and
the configuration of the system. SCL can be
used to duplicate an existing system's
capabilities, perform data pre-processing, self-
test, or autonomous control. The amount of

control given to the system can be determined
by the project office.

Expert systems have been recognized as being
applicable to ground and space applications.
However, association with Artificial Intelligence
continues to project negative connotations for
some people; the relationship must often be
avoided.

Other Uses for SCL

The use of abstraction and object-oriented
techniques allows the SCL Real-Time Executive
to be applied in a variety of areas:

Spacecraft controllers: The RTE is available in
both C and Ada making it applicable to a wide

variety of processors.

Subsystems Controllers: The SCL system is
designed for distributed environments and as such
allows for a hierarchal bus structure for

subsystem controllers to report to a system
controller.

Centralized ground station computers: The
system can be used in conjunction with X-
Terminals to manage ground station resources
such as antennas, frame syncs, command
encoders, etc. The system can also be used for
scheduling ground station resources.

Workstations: The SCL system is ideally suited
for use on workstations to allow distributed

processing and parallel analysis. The system is
also useful for driving graphics and visualization
tools. Results from local workstations can be

reported back to a central computer, or commands
may be uplinked to change or correct the mission
profile. SCL has been demonstrated to be
capable of analyzing the spacecraft configuration
and providing advisories for operators and
spacecraft engineers.

Integration and Test: The SCL system is used
at Integration and Test (I&T) facilities to perform
automated command procedures. The procedures
developed at the I&T facility can then easily
migrate to the tracking facility. If SCL is also
used for the spacecraft, the scripts and rules can
also migrate to the spacecraft. The on-board
processing capabilities of SCL allow a spacecraft
to perform self-health diagnostics and report its
status to the ground.

Test Equipment: Quite often, mission unique
hardware must be developed for test equipment.
The equipment often requires a control system
and a language to allow it to be commanded to
perform its functions. SCL can easily be
embedded in the target hardware to provide a
standard interface for all phases of testing.

Simulation: SCL has been proven to be capable
of providing command response simulations as
well as detailed modeling of systems. The
simulations can be used to augment missing
subsystems during spacecraft integration as well
as provide a common platform for system training
of operators and other personnel.

Conclusions

The SCL system is quite feasible for use on
distributed systems for ground and space. The

SCL system also helps promote a standard
interface for the many facets of ground and space.
The system does introduce information
management problems that are overcome by a
disciplined approach to configuration
management. This disciplined approach must
also extend to the distribution of databases and

knowledge bases. The system is several years
into its development, has had numerous proofs-
of-concept, and is in use at several sites. The
SCL system provides a low-cost, low-risk
solution for many of today's command and
control environments.

Acknowledgments

We would like to thank the following people for
their contributions to this paper: Dave
Schriftman, and Patrick Pinchera.

References:

I. Buckley, Brian and Wheatcraft, Louis:
Spacecraft Attitude Control using a Smart
Control System, SOAR Symposium, Houston
TX., July 1991

. Buckley, Brian and Wheatcraft, Louis:
Spacecraft Command Language - A Smart
Control System, Interface and Control
Systems, Melbourne, FI., Barrios Technology,
Houston, TX., March 1991

. Van Gaasbeck, James: Technical Overview of
the Spacecraft Command Language Naval
Research Laboratory, Washington D.C., 1991

. Interface and Control Systems: SCL User's
Guide, Naval Research Laboratory,
Washington D.C., 1990

, Buckley, Brian and Wheatcraft, Louis: Rapid
Prototyping of a Spacecraft Controller,
JAIPCC Symposium, Houston TX., March
1991

. Buckley, Brian and Wheatcraft, Louis:
Spacecraft Simulations with a re-usable
Smart Control System, JAIPCC Symposium,
Houston TX., March 1991

70

N92-23362

Abstract

Evaluating Model Accuracy for Model-Based Reasoning
) •

Steve Chien and Joseph Roden
Jet Propulsion Laboratory, California Institute of Technology

Pasadena, CA :
tj /,-)

"q-r: _

performance to characterize how well a model
captures the behavior of the target system.

Model-based reasoning has been proposed as a
general methodology for such diverse tasks as
monitoring, diagnosis, control, and design. In
this approach, a behavioral model mimicking the
structure of the target system is used to reason
about expected performance of the target system.
However, most such work does not explicitly
account for inaccuracies in the model.

This paper describes an approach to automatically
assessing the accuracy of various components of
a model. In this approach, actual data from
operation of the target system is used to drive
statistical measures to evaluate the prediction
accuracy of various portions of the model. We
describe how these statistical measures of model
accuracy can be used in model-based reasoning for
monitoring and design. We then describe
app/ication of these techniques to monitoring and
design of the water recovery system of the
Environmental Control and Life Support System
(ECLSS) of Space Station Freedom.

Keywords: model-based monitoring, diagnosis,
control and design, validation of knowledge-based
systems, model-based simulation

1. Introduction

This paper describes a statistical approach
to measuring the prediction error of a model
based upon an analysis of model prediction
performance on actual data. This analysis
produces a statistical model of expected
model prediction error. This model of the
model error is then used in the model-based

reasoning tasks of monitoring and design.

The next section of this paper describes
how the statistical techniques are used to
create a model of the error and how this
model of the error can be used to calculate

confidence intervals. The following section
describes how this confidence interval
information can be used in model-based

monitoring and design tasks. This section
also describes several applications of this
error model to monitoring and design of the
Environmental Control and Life Support
System for Space Station Freedom. The
discussion section of this paper focuses upon
ongoing work to increase the accuracy of the
error models by applying machine learning
techniques to learn error models.

Model based reasoning has been
advocated as a general approach to a wide
variety of tasks such as monitoring [Doyle et
al. 89, Doyle et al. 91, Dvorak & Kuipers
89], diagnosis and interpretation [Davis and
Hamscher 88], control [Scarl et al. 88], and

design [Chien et al. 91a, Chien et al. 91b,
Bose & Rajamoney 91]. However, despite
this strong effort, comparatively little work
has focused upon using actual data on model

Authors' Address: JPL, M/S 525-3660,
4800 Oak Grove Dr., Pasadena, CA 91109-8099
Internee {chien,roden }@aig.jpl.nasa.gov

2. Evaluating Model Accuracy

Model-based reasoning uses a model of a
system to predict the behavior of the system
under the conditions included in the scope of
the model. It is useful for applications using
a model to know how accurately the model
predicts the behavior of a system being
modeled. Instead of simply predicting that a
measure will take on some value, it is more
useful to state how confident the model is in

predicting that value.

#

/

71

Model accuracy can be evaluated by
comparing model behavior to observed
system behavior. Through analysis of errors
in predicting system behavior, we can
estimate the amount of error we expect a
model to produce. Data obtained by
performing model evaluation studies can
provide a basis on which to model the errors
a model produces.

Model error (A) is defined as the

difference of the model predicted value (m)
based on previous observed system values
and the current observed system value (o) for
a given system state:

(1) A=m-o

For our applications, the time step is
relatively constant. Thus the model is

making a prediction of the i-th time step from
the data of the (i-1)th time step. In Figure 1,
the model error is the difference between the

model predicted value and the observed
system value over time.

36.

35.

Sensor 34.
Value

33.

32 I I I

0:00 0:06 0:10 0:16

Time (HH:MM)

--Predicted by Model -- Ob6erved in System

Fig 1. Graph showing difference between
model predicted value and observed
system value over time

For a given operating mode of a system,
some number (n) of observations of one time

step model predictions are taken, and the
error computed for each. This results in a
sampled model error distribution of A], A2,

.... An. From this distribution we develop a
general model of the error. We observed our
samples to be approximately normally
distributed. Figure 2 shows a histogram of
model error for a particular sensor. Given
this sampled error distribution, we estimate

that the true model error is normally
distributed with mean X and variance s2.

Counl

7O0

600

500

400

300

200

100

0

-10.6 -8.1 -5.6 -3.1 -0.6 1.9 4.4 6.9 9.4 12.0

ModelErrorVidue

Fig 2. Histogram showing model error
distribution for sensor KP02

For a given operating mode of a system,
we evaluate model accuracy by determining
the probability (p) that the true system
measurement (t) will take on a value within a
range of values (m-e, m+e) around the model
predicted value (m). This probability can be
determined given the distribution of the
model error. Alternatively, by setting an
acceptable probability bound, we can
determine the range of values that the true
system will take on with that probability.
Equation 2 shows how this probability is

determined given O, the cumulative
distribution function of the standard normal
distribution.

(2) P(m-e < t < m+e) =

e-X -e-X,I,(v-)-'I' (-r-)
Using the probability table for the

standard normal distribution, this measure

quantifies the accuracy with which a model
predicts the true system measurement.

3. Applying the Error Model in
Model-based Reasoning

This section describes two applications of
confidence intervals to model-based

reasoning: model-based monitoring as
applied to discrepancy detection and model-
based prediction for design.

72

3.1ApplicationtoModel-based Monitoring

One application of model accuracy is in
model-based monitoring [Doyle et al. 89,
Dvorak & Kuipers 89]. In model-based
monitoring, a model of the target system is
used to predict sensor values. Deviations
from the predictedvalues are indicationsof
abnormal behavior and are thus indicative of

sensors which should be reported to
operators. However, if portions of the model
in certain operating modes are inherently
inaccurate because of noise or poor
understanding or predictability of the
occurring phenomenon, the strength of the
moders predictions should be
correspondingly reduced.

One method to account for model

inaccuracy in model-based monitoring is use
of a running average of model/actual
deviation [Doyle et al. 91]. In this approach,
a running average of the deviation between
model predicted and actual values is
maintained. By tracking the current deviation
minus the running average of the deviation,
the current deviation can be ignored in cases
where the model has not been tracking the
system behavior accurately.

While the deviation from running average
deviation measures the recent performance of
the model, statistical measures over all
available historical data provide a measure of
past historical performance. With a
confidence interval capability as described in
the previous section, a more direct approach
to calibrating deviation scores according to
model accuracy can be applied. Specifically,
the statistical model of the prediction error of
the model can be used to generate a measure
of the unusualness of a deviation of the
model from the observed value.

For example, consider the following
example from our ECLSS monitoring
application. Using the techniques described
in the previous section, a sensor KP02 is
measured to have a error with a measured
distribution of mean -0.19 and standard

deviation 1.89 in system operating mode
PROCESS. If we observe a discrepancy of 3
PSIG between the observed and predicted
values, we can now use the equations shown

in Section 2 to produce a confidence rating of
0.89 that the model is within 3 PSIG of the

actual. Thus high confidence values for the
error being less than the current deviation
indicate unusual deviations.

As a second application to model-based
monitoring, consider the case where a model
historically predicts well but has recently
been predicting poorly. This may indicate a
persistent unexplained phenomenon affecting
the sensor or portion of the system in
question. Such a situation could be detected
by determining if the running average of the
deviation is at a level which is relatively
unusual given the error model (e.g. for a
running average deviation e, P(-e < A < e) is
high). This provides a measure of the
unusualness of the running average of the
deviation. Note that this monitoring measure
and the previous one are complementary.
The unusualness of the current deviation

catches quickly developing departures from
normal operations, but is susceptible to
random noise. The unusualness of the

running average of the deviation is not
susceptible to random noise, but takes longer
to manifest and inform.

3.2 Application to Model-based Prediction
for Design

Another application of model-based

reasonin.g is in evaluating sensor placements
for assistance in the design process.
Specifically, we have been working on
approaches to evaluate sensor placements
with respect to a diagnosability criterion
[Chien et al. 91]. In this approach a model of
the target system is used to determine how
specific proposed sensors would report
altered scores in the event of a fault

occurrence. More specifically, we evaluate
how well a sensor can distinguish between
classes of states with respect to three criteria.
For the purposes of fault detection, the
relevant distinction is between faulted and

non-faulted states. For the purposes of fault
isolation, the relevant distinction is between
faulted states.

Towards evaluating diagnosability,we
have developed three measures. First,
Discriminability measures how much of a

73

divergencethemodelpredicts would occur in
comparing between the two states. Second,
Accuracy measures the confidence in the
model's prediction of the expected
divergence. Third, Timeliness measures the
time lag between the occurrence of the fault
and the discrimination detected by the sensor.

Using the measure for model error we
have described in this paper, we can
formulate the confidence that the predicted
divergence would be predicted and the actual
value not deviate as a probability. The lower

the probability of this occurrence, which
represents the model predicting a change that
does not occur, the more likely the sensor

will be able to perform the discrimination.

3.3 Examples from Application to the ECLSS
Testbed

Our sensor placement approach is being
tested upon the water reclamation subsystem
of the Environmental Control and Life

Support System (ECLSS) for Space Station
Freedom. A model describing the behavior
of the Multifiltration Subsystem (MF) in
terms of fluid flow and heat transfer has been

constructed. This model was developed via a
combination of study of design
documentation (i.e., schematics, etc.) and
consultation with domain experts (e.g. the

operators of the testbed). This model has
been validated by comparison against actual
data from the subsystem testbed undergoing
evaluation at the Marshall Space Flight Center
in Huntsville, Alabama. We also have
constructed models of the Vapor

Compression and Distillation (VCD) and
Volatile Removal Assembly (VRA)

subsystems of SSF ECLSS. Together, these
models represent coverage of virtually the
entire water-side of SSF ECLSS. We are

also in the process of extending our model to
cover ECLSS air-side subsystems.

Figure 3 below shows the ECLSS
multifiltration subsystem. In this subsystem,
the water first passes through a pump at the
inlet to the MF system. Next, the water
passes through a coarse filter before entering
the sterilization loop. In the sterilization loop
the water is heated in the regenerative heat
exchanger and then by the in-line heater after
point 3. Within the sterilizer reservoir, the
temperature of the water is maintained at
250°F for several minutes. In the second

portion of the subsystem, the water passes
through a set of unibed filters designed to
remove particulate contaminants from the
water. Possible sensor types are flow rate,
water pressure, and temperature. Possible
sensor locations are indicated by ovals in

Figure 3.

Potential Sensor

(_ Unibed

Filters

Pump Pre-Filter

Inlet _R_enerat_eHeat Exchanger

Relief
Valve

Pwr

Pwr

b.Outlet

Fig 3. The Multifiltmtion Subsystem

74

In model-based monitoring, the
empirically derived model accuracy scores
impact monitoring in the following way. The
process mode model of the conductivity
sensor KT02 at point 4 exhibits poor model
accuracy (empirically derived mean of 2.15
and standard deviation of 27.24). Thus,

relatively large deviations from model
predicted values such as 4, with a confidence
rating of 0.52, do not cause the sensor score
to be brought to the attention of the operator.
However, the process mode model of sensor
KP02 is more accurate (mean -0.19 and
standard deviation 1.89) so that relatively
small deviations on the order of 4, with a

confidence rating of 0.97, cause the sensor to
be flagged and the sensor value to be brought
to the attention of the operator.

In model-based diagnosability
assessment, again the model accuracy figures
heavily in evaluating certain sensors. For
example, one possible fault is unibed
loading, which occurs when particulate
matter gets caught in the unibed filters. This
fault has several effects. First, a pressure
drop would occur, causing a lower pressure
at location 9. Second, unibed performance
would decrease, resulting in an increase in
conductivity downstream from the unibeds.
Third, if loading is significant, flow in the

entire subsystem may decrease. Again,
because the conductivity models are not very
accurate, the Accuracy measure of the
diagnosability evaluation would score the

pressure sensor placement higher than the
conductivity sensor placement for fault
detection of this fault.

4. Discussion

This work is preliminary; there are a
number of outstanding issues. One issue is
the selection of a normal distribution to model

the error. Other possible distributions may
model the error more accurately. A measure
of how well the derived error model matches
the observed distribution would be useful in

assessing the degree of confidence in the
error model.

Another issue is our choice to model the
error in absolute terms rather than as a

percentage bound based upon the current
model prediction (e.g. 4 PSIG 4- 5% rather
than 4 PSI(] 4- .20). This has ramifications if
the model error tends to increase as a function

of the model predicted value. A cursory
analysis indicates that in general, in our
domain, the error is not strongly correlated
with the model predicted value so that
modelling the absolute error seems
reasonable.

We also model the model error

independent of potentially relevant factors
such as other causally related model predicted
values. For example, the model may use an
equation to derive a temperature in the MF
subsystem that is accurate only in cases
where the water pressure is high. One
extension of our work focuses upon using
machine learning techniques to determine
what other potentially relevant factors would

be good indicators of model accuracy. In this
work we are investigating applying GID3* to
learn a model accuracy function for a sensor
S based upon model predicted value for S
and other sensors.

Another outstanding issue is that of

dealing with variable time steps. The
accuracy of the model's predictions clearly

depends upon how far into the future the
model is required to make predictions.

Currently, our model of the model prediction
error does not account for this variable.

5. Conclusion

This paper has described an approach to
evaluating the accuracy of a model's
predictions. This approach uses statistical
methods to develop a model of expected error
in model predictions. This paper has also
described how this statistical measure for
model error can be used in two model-based

reasoning tasks: model-based monitoring and
model-based reasoning for evaluating sensor
placements. By application of our derived
measure for model accuracy, the degree of

accuracy of the model of the target system
can be accounted for to increase the

usefulness of model-based reasoning in both
monitoring and evaluation of sensor
placements.

75

Acknowledgements

This work was performed by the Jet
Propulsion Laboratory, California Institute of
Technology, under contract with the National
Aeronautics and Space Administration.

References

[Bose and Rajamoney 91] P. Bose and S.
Rajamoney, "An Approach Based on First
Principles For The Design of Continuous
Devices," Proceedings of the 1991
Workshop on Model-based Reasoning,
Anaheim, CA, 1991.

[Chien et al. 91a] S. A. Chien, R. J. Doyle,
and L. S. Homem de Mello, "A Model-based

Reasoning Approach to Sensor Placement,"
Proceedings of the 1991 Workshop on
Model-based Reasoning, Anaheim, CA,
1991.

[Chien et al. 91b] S. A. Chien, R. J. Doyle,
and N. Rouquette, "A Model-based
Reasoning Approach to Sensor Placement for
Diagnosability," Proceedings of the Second
International Workshop on the Principles of
Diagnosis, Milan, Italy, 1991.

[Doyle et al. 89] R. J .Doyle, S. M. Sellers,
and D. J. Atkinson, "A Focused Context-

sensitive Approach to Monitoring,"
Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence,
Detroit, MI, 1989.

[Doyle et al. 91] R. J. Doyle, U. M. Fayyad,
D. Berleant, L. K. Charest, L. S. Homem de

Mello, H.J. Porta, and M.D. Wiesmeyer,
"Sensor Selection in Complex Systems
Monitoring Using Information Quantification
and Causal Reasoning," in Recent Advances
in Qualitative Physics, B. Faltings and P.
Struss (eds.), MIT Press, 1991.

[Dvorak and Kuipers 89] D. Dvorak and B.
Kuipers, "Model-based Monitoring of
Dynamic Systems," Proceedings of the
Eleventh International Joint Conference on

Art_cial Intelligence, Detroit, MI, 1989.

[Davis and Hamscher 88] R. Davis and W.
C. Hamscher, "Model-based Reasoning:
Troubleshooting," In H. E. Shrobe, editor,

Exploring Artificial Intelligence: Survey
Talks from the National Conference on

Artificial Intelligence, Morgan Kaufman, San
Mateo, CA 1988.

[Scarl et al., 88] E. A. Scarl , J. R.
Jameison, and E. New, "Deriving Fault
Location and Control from a Functional

Model," Proceedings of the Third IEEE
Symposium on Intelligent Control,

Arlington, VA, 1988.

?6

N92-23363

An Architecture for the Development of Real-Time
Fault Diagnosis Systems Using Model-Based

Reasoning

Gardiner A. Hall, James Schuetzle,

David LaVallec, and Uday Gupta

Loral AeroSys
7375 Executive Place, Suite 101

Seabrook, Maryland 20706
(301) 805-0300

Abstract I. Introduction

This paper presents an architecture for

implementing real-time telemetry-based

diagnostic systems using model-based

reasoning. First, we describe Paragon, a

knowledge acquisition tool for offline entry

and validation of physical system models.

Paragon provides domain experts with a

structured editing capability to capture the

physical component's structure, behavior,

and causal relationships. We next describe

the architecture of the run-time diagnostic

system. The diagnostic system, written

entirely in Ada, uses the behavioral model

developed offline by Paragon to simulate

expected component states as reflected in the

telemetry stream. The diagnostic algorithm
traces causal relationships contained within

the model to isolate system faults. Since the

diagnostic process relies exclusively on the

behavioral model and is implemented without
the use of heuristic rules, it can be used to

isolate unpredicted faults in a wide variety of
systems. Finally, we discuss the

implementation of a prototype system

constructed using this technique for

diagnosing faults in a science instrument. The

prototype demonstrates the use of model-

based reasoning to develop maintainable

systems with greater diagnostic capabilities at
a lower cost.

Diagnosing spacecraft faults is a difficult,
error-prone, and time-consuming activity.

Spacecraft diagnosis is performed by an

operations team composed of a large

contingent of highly trained people. These

people monitor a satellite telemetry stream

containing hundreds of system data points.

When an anomaly is detected, the operations

team analyzes this data with respect to

archived historical telemetry data and detailed

spacecraft design information. Analyzing

such large quantities of data and developing a

hypothesis explaining the data is an extremely

challenging task. It is not uncommon for

satellite anomaly investigations to take several

days.

The already difficult chore of satellite fault

diagnosis will be even more demanding in the
future. Satellites and their instruments will

become more sophisticated and complex,

raising the complexity of the fault analysis

process. Along with increased complexity,
future missions are expected to last longer. A
mission life measured in terms of decades

rather than years, introduces challenges in

maintaining the operations team skill level.

The desire to support interactive science

operations conducted by people external to

the control center will further complicate fault

diagnosis activities. The operations crew's

ability to maintain a current accurate

assessment of the spacecraft's state will be

77

taxed as more people manipulate the

spacecraft and its instruments. Due to these
increased complexities, the corresponding

control centers are apt to be more costly to

build, maintain, and operate.

The application of artificial intelligence
techniques promises to help alleviate these

problems by increasing the level of

automation in spacecraft operations.

Specifically, improving the automation level

of a control center may result in realizing the
following benefits:

a. reducing the risk of catastrophic
mission failures

b. reducing the cost of control center

operations

C. increased spacecraft and instrument
utilization

d. increased retention of key operator's
skills

e. an ability to "scale up" control centers

to handle more complex spacecraft,

more spacecraft and instrument
activities, and more users without a

proportional increase in cost

This paper describes a system that improves

the level of automation in a control center by

automating a control center's fault detection
and isolation activities.

Background

Our approach to providing automated fault

diagnosis tools that quickly and accurately

find and solve problems is centered on three

basic premises. First is the belief that

knowledge base construction and

maintenance activities are most appropriately

performed by domain experts. Second, a

fundamental feature of our expert systems is
the separation of problem solving from

knowledge acquisition. Third, the tools we

build reflect the notion that solving different

problems requires different problem-solving

techniques. The rationale for this design

philosophy is documented in [JAW-87].
Figure 1 illustrates .the architecture derived

from these design principles.

Our first tool, a rule-based expert system,

the Ford Lisp Ada Connection (FLAC)
described in [JAW-88], includes an offline

knowledge acquisition component and an

online inference engine. The offline

component is an intuitive graphical editing

tool that is used directly by the domain

expert. It does not require knowledge of AI
or expert systems and is easily learned by the

domain expert. The rule base is developed as
a graph of nodes symbolically depicted as

and/or gates, as typically seen in CAD

systems for integrated circuit design. Once

the expert is satisfied with the rule base it is
downloaded to the online system. The rule
base is loaded into data structures at run time

for use by the embedded Ada inference

engine.

FLAC successfully demonstrated the

feasibility of real-time expert systems.

However, the limitations of production rule

systems soon became apparent. Fundamental

to these systems is the requirement to

enumerate explicitly all possible faults.

Intuitively, as the complexity of the system
increases, it becomes increasingly difficult to

predict accurately every possible fault

scenario. Another deficiency in the rule based

approach is the inability to gracefully solve

problems that change over time. One key

requirement for a diagnostic system is the

capability to reason about temporal and

control relationships between attributes of the

target system. Developing a rule base that

captures and implements rules describing

temporal and control relationships is

exceedingly difficult and error-prone.

78

Of IrLINI SVSI|M

DE |UGG_NG// I "_

| I1_11|

i_ I o.,u.,. I

KNO',d_|O_AE IIIASi ACC|$$1[S }| IIrUt| |AS4E |

/I "'°" I

V I (PA_0ON} l

IPllOWt 1001

I \F---l/ \F---V
J _1 Ir I (Pu+Ar,oul I • •

O_tN_ $vSYlld

Figure 1. An Architecture for Knowledge-Based Systems

Issues associated with maintaining a rule base

large enough to describe a spacecraft also
became apparent. Because of the unstructured

nature of rule bases, maintenance is difficult

when adding or modifying rules. The
unstructured nature of rule bases also leads to

a formidable verification and validation task.

Additionally, as rule bases become larger,

maintaining consistency between rules

becomes increasingly difficult. Maintaining

rule base integrity requires the addition of
more rules and routines dedicated to the

consistency checking function.

bo

know the internal processes of a
machine and can determine the

machinery's state from observed

values. In a rule-based system,

relationships defining each observation
and the machine's state must exist.

Model-based systems can reason about

a system as it changes over time.

Model-based reasoning systems have

this capability because events and
conditions can be represented by
mathematical functions that are close

approximations of actual conditions.

To overcome these difficulties, we began an

investigation into a model-based reasoning
approach to real-time fault diagnosis. The

model-based reasoning approach has

promising features relevant to control center

fault diagnosis activities. For instance:

ao Model-based systems reason from

deeper principles. Model-based systems

Like FLAC, our model-based reasoning

system contains an offline graphical

component for easy entry of knowledge, and

an online embedded diagnostic component.

The offline component, originally

implemented by Loral's Space and Range

Systems division, is a model-building tool

called Paragon. Paragon is used to build a
structural and functional model of the system

to be monitored. The model is exported as a

file to be loaded at run time by the online
diagnostic component. The diagnostic
system,developedby Loral AeroSys,uses
the behavioral model to predict expected
statesfor the systemandcomparesthemto
actual statesas reflected in the telemetry
stream. The diagnostic algorithm traces
causalrelationshipsdescribedin themodelto
isolatesystemfaults.Thediagnosticsystem
is implementedin Adaandis capableof real-
time performance on conventional
processors.

The remainderof this paperdiscussesour

experiences with the model-based reasoning

approach in more detail. Section II describes

the architecture of the system. The

implementation of the prototype is covered in
Section III, and our results and conclusions

are presented in Sections IV and V

respectively.

II. Model-based Reasoning System
Architecture

In our prototype system there is an offline

component for creating and verifying

knowledge bases, and an online component

for the diagnostic software. This design

reflects the architecture of many current
control centers (e.g., MSOCC, Space

Telescope). The offline systems define

telemetry and command databases, while the
online systems use these databases for

interpreting spacecraft telemetry and building
spacecraft commands.

Offline Knowledge Acquisition

System

The Paragon knowledge acquisition tool
provides a method to construct a detailed

structural and functional model of a problem

domain. The model is specified in terms of

objects, object behaviors, and relationships

between objects. These different views of a

model can be thought of as defining

conceptual and relational entities. Conceptual

entities define concepts existing in the

problem domain and are composed of
dynamic and static aspects. Dynamic aspects

describe an object's relationships to other

objects and how that object may be
manipulated. Static aspects describe the

object's attributes and how these attributes

relate to other concepts. Relational entities

describe relationships between two concepts.

Each relationship within the model has a

specific and well-defined behavior. Figure 2,

a screen dump from a Paragon session,
provides an example model definition.

Concepts in the Paragon system are either

relations, classes, or instances. The Paragon

system supports inheritance in the form of

classI:g) subclass _ instances. This

classification scheme is a strict hierarchy; an

instance may have at most one defining class.

Using this scheme, a semantic network is

constructed representing the real-world

system. The frames composing the network
are the defined instances. The slots of the

frame hold the object's attribute values.

Relation objects link the frames to complete
the network.

Figure 3 provides an example of applying

concepts, relations, and dynamic and static

aspects to a physical object, a thermal switch.

Two relationships, temperature and current,

affect the concept thermal switch. The switch

also contains the local attributes switching

temperature and output. The internal process

of the thermal switch provides for two
possible states: ON and OFF. The dynamic

aspects of the concept of the thermal switch
are represented by the links labeled

Temperature > = SW and Temperature < SW.

These represent the possible transition
conditions between the ON and OFF states.

For example, if the incoming temperature

value is less than the local attribute switching

temperature, control is passed to the ON

state. The static aspects of the thermal switch

concept are described by the event equations
labeled Output = 0 and Output = Current.

8O

ClmcP

PAIITIAL GRAPH

CLASSES STRUCTURE

Figure 2. Sample Paragon Knowledge Base

Thermal Switch

Current

Temperture

ON

omporaturo)n J

witching TompJ

putput • current J

r

A

I Switching Tamp.Output J

OFF

_)utput - 0 J

_omporeturo <
witching Tomp. I

k

W

Figure 3. Thermal Switch Class Example

81

Using these ideas, a model of the physical

system is built by recursively defining and

instantiating frames and relationships. For a

spacecraft, the objects in the system are the

onboard components. Each object's attributes

are the parameters contained in the
spacecraft's telemetry stream. The design and

functional information for each object is

captured by defining the object's possible
states, state transitions, and behavior when in

a particular state. An object's attributes may

be affected by other local attributes, itself, or

attributes of another object. The process of

defining objects and relationships continues
until a model of satisfactory fidelity is

achieved. Included with Paragon are tools for

inspecting the classes, objects, and

relationships within the system. Also

included is a simulation capability for

validating the model's correctness.

Online Diagnostic System

The real-time component of the diagnostic

system is the Model-Based Reasoning

(MBR) module. The primary function of the

MBR module is to detect and diagnose

electromechanical or other system faults in

real time. The diagnostic system is composed

of simulation, monitoring, and causal

analysis subsystems. The simulation

subsystem uses the Paragon-developed

knowledge base to generate expected values

for each telemetry (attribute) point. The

monitoring subsystem synchronizes the

simulation with actual time, and performs

expected versus observed value comparisons.
A mismatch between these two values

triggers the causal-analysis subsystem. The

causal-analysis subsystem develops

hypotheses explaining the observed behavior

by examining each faulty component's

relationships. These three subsystems work

in unison to perform fault detection and

diagnosis.

The simulation subsystem uses the
information contained in the Paragon model

to continuously update the target system's

expected state. Specifically, the simulation

cycles through all the objects in the system,

evaluating each object's state transition
criteria for the current state. Once the current

state is determined, its attributes are modified

to reflect that state. The frequency of the

simulation's cycle is the real-time rate.

Modifications to the expected state can be
effected through external commands,

scheduled activities, or the model's internal

processes. Maintaining this model provides a

reference point for evaluating the spacecraft's
health.

The monitoring subsystem is responsible for

fault detection. The monitoring process

compares time-synchronized, simulation-

generated, expected values with actual

system-measured values (telemetry in the

case of a space system) at predefined time

intervals (cycle). A component is considered
to be abnormal when these two values

disagree. These abnormal components, along

with their attributes, actual and expected

attribute values, and fault-detection cycle

identifiers, are posted to a blackboard

structure, called the Abnormal-Components-
Blackboard. The Abnormal-Components-

Blackboard is inspected to determine if the

detected abnormal component exists on the

blackboard. If the component does exist on

the blackboard, its fault-detection time-cycle

identifier is updated with the old fault-

detection time-cycle number before it is

posted to the blackboard. Whenever

abnormal components are detected, further

analysis is performed by the causal analysis

subsystem to isolate the exact cause(s) of the

fault(s) from the abnormal components list.

The causal analysis of suspected abnormal

components relies on functional and design

information provided by the Paragon model.

The basic fault-diagnosis strategy for the

causal analysis is:

82

a°

b.

c.

The list of suspected components is

read from the Abnormal-Components-

Blackboard. A node corresponding to

each suspected component is created.
These nodes are referred to as Fault

Mechanism Nodes (FMN) and are

maintained in a list structure.

Design and causal link information is

obtained for each faulty component.

During this step, the causal-effect

pointers of the FMNs are assigned.
Three types of pointer are set: In-link,

Out-link, and Next pointers. In-links

point to FMNs whose components
affect the attribute(s) of the current

FMN. FMN Out-links point to FMN(s)

whose component(s) attribute(s) can be

affected by the current FMN. The Next

pointer simply points to the next FMN.

Setting In-link, Out-link, and Next

pointers transforms the FMN list into a
graph, referred to as a Fault Mechanism

Graph (FMG). Figure 4 shows a FMG.
Each block contains the component

name, In-link, Out-link, and Next FMN

pointers. As shown in Figure 4, the

component Power Supply 1 has a null
In-link pointer indicating that it is not

affected by any other FMN. The Out-

link pointer of Power Supply 1 points
to the node Instrument Power. This

indicates that Power Supply 1 causes
Instrument Power to be abnormal.

Instrument Power's In-link pointer
indicates that Instrument Power is

affected by Power Supply 1. The

component VNIR FPA has a null Out-

link pointer indicating that it does not
affect other FMNs. These

interpretations can be similarly applied

to the other nodes of the graph.

Instzument
Power

VNIR

FPA

Scan

Electronics

Power

Supply
1

L_nd:

In-link

.... c_t-L,°k
Next

Figure 4. MODIS Fault Mechanism Graph

d° The In-link and Out-link pointers of
each node of the FMG are examined.

Components with null In-link pointers
are considered to be fault sources.

Fault-propagation paths are computed
by iteratively selecting those FMN's

with null In-link pointers, tracing the

node's Out-link pointer to the affected

FMN and tracing the affected FMN

Out-link pointer to other affected FMNs

until the current Out-link pointer is null.

These paths explain the order in which

components became abnormal.

Steps a through d are repeated when a fault-

detection cycle detects an abnormal

component, or a previously detected

abnormal component is found to have
returned to a normal state.

III. Prototype Implementation

We demonstrate our model-based approach
for real-time fault detection and diagnosis in a
testbed environment. The testbed is a

complete command and control environment

for the Moderate Resolution Imaging
Spectrometer (MODIS), a future Earth

Observing System (EOS) instrument. Our

prototype runs on a VaxStation 3100 and is

implemented in the Ada programming

language. The MODIS model was developed

using the PARAGON tool on a Symbolics
3640 and downloaded to the Vax

workstation.

states, state transitions, and internal attribute

update equations for all components.

The testbed contains three processors to
provide a high-fidelity environment for

evaluating control center automation

techniques. The architecture of the testbed is

shown in Figure 5.

The Symbolics is the offline processor, used

for creating knowledge bases. One of the
VaxStations is dedicated to control center

functions. In addition to fault diagnosis, there
is software for:

a.

b_

Receiving and decommutating a 2 Kbs

stream of packetized telemetry

C.

Processing and transmitting instrument
commands

Displaying graphically instrument
telemetry data

The other VaxStation, the telemetry source,

executes simulation software generating

instrument telemetry. The simulator has the

capability to:

a. Modify the value of any object's
attributes

b. Update the current state of an object

C. View any object's attribute values

The model, based on a proposed design for
the MODIS instrument, took three months to

implement using Paragon. The MODIS

model consists of over 50 component

classes, 80 components, and 11 types of

functional relationship. In addition, the model

is capable of responding to 96 different
instrument commands, and transmits 132

different telemetry points. The model
includes definitions for all normal instrument

do Control the length of simulation cycle
time (useful for debugging)

eo Accept and process instrument

commands sent from the ground

f. Packetize and transmit telemetry.

Telemetry and commands are exchanged

between these two processors by way of

Ethemet using the TCP/IP protocol.

114

VaxStation 31 O0

Symbolics

Model Editor

Modol Validation

Monitoring Displays

I FDIR l

Model Representation
Simulation

Model

T

VaxStation 31 O0

I Modal Simulation I

Figure 5. MODIS Control Center Testbcd

IV. Results

Using the testbed, the prototype MBR system
has been tested under several different fault
scenarios. These fault scenarios were

developed on the basis of Lorars spacecraft

operations experience. The types of fault
scenarios tested were:

Importantly, these fault scenarios were
designed after the implementation of the

model and fault diagnostic software. In no
case were component specific rules

describing fault conditions or causes

implemented.

V. Conclusions

a°

b.

c.

Components that commonly fail during

mission (e.g., a sticky relay)

Rare or infrequent component faults
(e.g., a failed door drive motor)

Multiple simultaneous fault scenarios

(e.g., a failed heater and a faulty relay).

We also tested the case where two

components affecting a common component

fail. In this scenario, our prototype identified

both components as failed. In all fault

scenarios tested, the MBR system accurately
detects and isolates the source of fault.

These preliminary results suggest that model-

based reasoning is a viable method for

automating spacecraft fault detection and

diagnosis activities. On the basis of this

research several advantages of the technique

arc apparent:

a. A model-based system is capable of

detecting and diagnosing unpredicted,
non-intuitive faults in a continuous,

dynamic system in real-time

b= The knowledge acquisition process is

shnp_ed

85

Co The maintenance of the knowledge base

is simplified

d. This technique can be leveraged with
other control center and spacecraft

implementation efforts.

This system has the capability for detecting

and diagnosing unpredicted faults. The test

cases that have been devised emphasize this

point. The design of the fault scenarios used
for test purposes was based upon operational

requirements rather than diagnostic system

capabilities. During demonstrations of the

prototype, faults are generated "on the fly" by

having members of the audience select the

component to be faulted.

Knowledge acquisition activities for

implementing the system are reduced.

Building the knowledge base for a model-

based reasoning system only requires the
ability to describe a correctly operating

system. Since there is no need to enumerate

all possible behaviors, the amount of time

required for constructing knowledge bases is

reduced. Verification of the knowledge base

is easier. Using the physical system as a

reference point allows a simple comparison

demonstrating the model's accuracy. One of
the advantages of representing a physical

system as a network of objects is that this

presentation lends itself to a graphical
representation. A graphical representation is

advantageous because it allows the

knowledge-base builder to view components

from different perspectives.

An important advantage a model-based has

over rule-based systems is that knowledge-

base maintenance is an easier task. The object
orientation of the model simplifies knowledge

base maintenance. As each object's interfaces

with other objects in the system are clearly
defined, modifications can be localized to the

object, reducing the potential for harmful side

effects. The object-oriented approach also

provides for potential knowledge-base reuse.

For example, libraries containing generalized

reconfigurable objects can be built.

The single most important advantage of a

model-based system may be that it is

complementary to current control center
designs. Calculating the expected state for

each on-board component provides a

mechanism for dynamically updating

telemetry limits and alarm values. Another

key point is that most projects construct

simulators for ground system verification and

training. The model-based technique for fault

diagnosis provides a method for leveraging

these simulators into day-to-day operations.

References

[JAW87] Jaworski, A., LaVallee, D., Zoch.

A Lisp-Ada Connection, Proceedings of the

1987 Goddard Conference on Space

Applications of Artificial Intelligence and
Robotics, (1987).

[JAW88] Jaworski, A., Thompson, J.
Automated Satellite Control in Ada,

Proceedings of the 1988 Goddard

Conference on Space Applications of

Artificial Intelligence and Robotics, (1988).

Bibliography

Items not specifically referenced in the text.

Ferguson, J.C., Siemens, R.W., Wagner,

R.E.STAR-PLAN: A Satellite Anomaly

Resolution and Planning System,

proceedings of AAAI Workshop on Coupling

Symbolic and Numerical Computing in

Expert Systems, (Aug. 1985)..

Fulton, S., Pepe, C. An Introduction to

Model-Based Reasoning, (January 1990), AI

Expert (pp. 48 - 55).

N9 2 - 23 o')64

The Achievement of Spacecraft Autonomy

Through The Thematic Application

of Multiple Cooperating

Intelligent Agents

Philip J. Rossomando

General Electric Military and Data
Systems Organization _ F " -- _:_

(215)531-5087

King of Prussia, Pennsylvania

KEYWORDS: Autonomy, Automation, Blackboard, Real-time Diagnosis, Expert Systems,

Theme, Role Playing

1.0 ABSTRACT

This paper presents a description of UNICORN, a prototype system developed at General Electric

for the purpose of investigating Artificial Intelligence (AI) concepts supporting spacecraft autono-

my. With this objective, UNICORN employs thematic reasoning, of the type f'trst described by

Rodger Schank of Northwestern University, to allow the context-sensitive control of multiple intel-

ligent agents within a blackboard-based environment (Schank, 1977). In its domain of application,

UNICORN demonstrates the ability to reason teleologically with focused knowledge. Also pres-

ented within the following sections are some of the lessons learned as a result of this effort. These

lessons apply to any effort wherein system level autonomy is the objective.

2.0 INTRODUCTION

A space-based system is composed of many subsystems whose associated performance can each

contribute significantly to the success or failure of a mission. Each of these subsystems has its own

changing needs and possibly conflicting requirements, which must be reconciled to maintain overall

spacecraft health and operability. To address these issues, the solution space can be partitioned into

multiple abstraction levels along both physical and functional boundaries. This partitive approach

to spacecraft autonomy can be complemented through the context sensitive application of both con-

ventional and advanced AI techniques within a hierarchical distributed control structure of the type

currently found mostly within research institutions. The selective application of independent intelli-

gent agents brings significantly more applicable knowledge to bear on a problem than is possible

through the utilization of either conventional expert system or procedural methodologies alone.

87

.-4---

For the past several years, GE in King of Prussia has been exploring AI problem solving paradigms

that it feels will ultimately lend themselves to autonomous spacecraft operation. The first of these,

rule/experiential and case-based reasoning, while allowing diagnostic knowledge to be expressed

explicitly in the form of if-then rules and structured objects, fails prey to boundary conditions and

is limited by the need for the a priori definition of faulted models and past cases. On the other hand,

model directed reasoners of the type originally proposed by Johan de Kleer and Randal Davis are

extremely CPU intensive ((deKleer, 1987), (Davis, 1985)). This fact limits their applicability within

real-time environments of the type within which an autonomous spacecraft is expected to operate.

To achieve autonomous operation, what seems necessary is a problem solving paradigm that allows

the combining of the benefits of these approaches while at the same time minimizing their inherent

weakness.

To attain the hybrid operation "alluded to requires the ability to choose between knowledge sources

employing both deep and shallow reasoning, based upon the current operational context of the space

platform. This context need not necessarily be derived from the physical environment alone, but may

arise from the goals and expectations identified to the spacecraft before and during operation. The

blackboard control structure first introduced within the HEARSAY II environment appears to allow

for this cooperative application of diverse knowledge sources (Erman, 1974). The twist however,

introduced at GE, is not to opportunistically apply knowledge blindly but rather to do so in a focused

manner that takes into account the spacecraft's context and the competing goals and demands of each

of the subsystems of which the spacecraft is composed. This capability requires the utilization of

intelligent agenda schedulers that understand these underlying needs while at the same time possess-

ing a teleological comprehension of mission objectives within the constraints imposed by their as-

signed roles. This fact is significant because the goal of UNICORN is not just automation of space

system functionality, but rather, is true autonomy.

While both autonomy and automation share attributes, and while both imply a reduction in human

physical work load, autonomy also implies an understanding of purpose. This fact can be utilized

to achieve a significantly greater reduction and/or elimination of the requirement for human cogni-

tive activities related to spacecraft administration. Only through a deep understanding of mission

objectives provided through the utilization of AI technologies supportive of autonomy, such as those

herein documented, can we expect to produce self-directed spacecraft. By understanding why it was

created, the autonomous system can be placed in a better position to prioritize its activities, utilize

scarce resources, and generate expectations so as to achieve complex objectives. The question thus

becomes how to develop a system wherein an understanding of both mission and ability can be uti-

lized to guide performance in a highly unpredictable and constantly changing environment.

2.1 Background

The following sections provide the background needed in order to comprehend the difficulty of the

spacecraft autonomy problem and why Thematic Reasoning within a blackboard-based comrol

structure was chosen to address this issue.

2.1.1 Development History

GE began its investigation of autonomy by attempting to identify those spacecraft-related tasks

where autonomy seemed most applicable. As indicated in Figure I, spacecraft functionality can be

divided into three areas:

1. Mission Management

2. Health & Maintenance

3. Payload Operations

Mission management relates to those tasks necessary to ensure that the payload can perform its as-

signed task. Such activities as on-board orbit maintenance and resource management fall under this

heading. Under normal circumstances, an unmanned spacecraft's Prime Directive is to achieve as

many payload mission objectives as possible. It is the duty of the Mission Manager to see to it that

the overall spacecraft functions smoothly in addressing this directive. A payload is the package car-

ried by the BUS that performs the task(s) for which the spacecraft was constructed.t Payload Opera-

tions determines what and when payload related activities are to be performed and makes demands

of spacecraft resources based on these objectives.

__[_cTISPACECRAFT ' i

,MANAGEMENT , MAINTENANCE OPERATIONS

DETECTION ISOLATION ANALYSIS
i

.

Figure 1. A Taxonomy Of Spacecraft Functionality

We use the terms BUS and spacecraft interchangeable within this paper.

89

Assuming an active payload, the demands placed on the BUS by the Mission Manager as a result

of payload objectives can be expected to change with time. These demands are addressed by space-

craft BUS dedicated subsystems such as:

1. Power System

2. TI'&C System

3. Thermal System

4. ACS

For example, the Electrical Power and Distribution SystemfEPDS) is expected to provide electrical

power to the payload and the BUS's subsystems, while the Attitude Control System (ACS) is ex-

pected to maintain the spacecraft's stability. The Health and Maintenance function is responsible

for ensuring that when resource/functionality demands are made of these subsystems they can be

adequately addressed. This is done by:

1. Monitoring BUS related-subsystem operation relative to

contextual expectations, thereby detecting possible fault-

related symptoms.

2. Identifying trends that may imply future failures for

which early corrective action can be taken.

3. Performing fault isolation and triage analysis. 2

Because of a variety of factors, these are not easy tasks to make autonomous.

One significant reason for this difficulty is that the BUS subsystems are complex devices with many

interacting subsystems of their own. Each of these is in turn composed of many parts whose behavior

is critical to proper spacecraft operation. Faults within any of these components can cause adverse

symptomatic behavior in the other components both within and external to the faulted subsystem.

In addition, the behavior of spacecraft components can change without the presence of a fault any-

where within the spacecraft. The cause of an anomalous component behavior may be due to some

change in the external spacecraft context. As indicated in Figure 2, in the course of its lifetime, an

earth--orbiting satellite will change position relative to the earth, the moon, and the sun many times.

Depending on that position, the behavior of critical satellite components can be expected to vary.

. The UNICORN system performs triage analysis after it isolates the cause of a failure. In the case of a failed
sensor, the identifying agent may choose to remove it from the scan list. If a backup system exists or a work
around is possible, this may be provided as a recommended correction. On the other hand, there may exist no
possible corrective action, and the spacecraft will then attempt to make do as best it can.

9O

The electrical output of a solar array for example, can drastically change when the satellite is

eclipsed by the earth or moon, without even a fault in that component. In the process of investigating

spacecraft contexts, it was determined that these need not be just physical but may also be temporal

(Allen, 1984). Component aging can also have a significant effect on behavior expectations. While

these context changes can be predicted, others cannot and may appear as something other than what

they actually are. For example, a nuclear burst exhibits many of the same characteristics as a solar

flare. Another significant factor that further complicates the Health and Maintenance function is that

even after a fault is corrected, spacecraft behavior does not instantly return to normal. During this

period, if constraints are not relaxed, symptomatic behavior can be expected to continue even in the

absence of a new fault.

WINTER

..'".... \
o"

8ATELUll _ / . AUTOMINAL

, _ foumox
, 0 •

VERNAL

SUMMER

Figure 2. A Spacecraft's Context Is Dynamic

In 1986, in an attempt to automate the spacecraft Health and Maintenance function, GE utilized KEE

on a Symbolics 3640 computer to develop a rule-based expert system, applying W. Clancy's classifi-

cation strategy for performing diagnosis on a portion of the DSCS ACS ((Clancey, 1984), (Bell,

1986)). 3 While successful in its application domain, it soon became evident that enough rules could

never be identified so as to ensure the diagnostic autonomy of an ACS let alone that of an entire

spacecraft. In addition, it was discovered that if a fault exhibited symptoms slightly different from

those expected, the rule-based system could not identify its cause. 4 Thus, the utilization of model-

directed reasoning with constraint propagation and constraint relaxation was decided upon. This

seemed to be an ideal approach as GE has a wealth of first-principle satellite knowledge readily

available; by reasoning from first principles, faulted models are no longer necessary. Model-di-

rected reasoning also seemed appropriate, as it appeared the only way to explicitly represent the pe-

ripheral paths of causal interaction introduced by the environment and adjacent, but not connected,

3. KEE is a trademark of IntelliCorp.

4. Even the loss of one sensor can completely blind a rule-based diagnostic expert system and cause it
to arrive at erroneous conclusions.

91

subsystems ((Abbott, 1990), (Davis, 1985)). To investigate the accuracy of these predictions, in

1987 a model directed system was developed, also in KEE, to diagnose faults within an ACS. This

system worked well but brought to light problems that originally were not apparent (Rossomando,

1988). For example, back propagation is not possible when the component's transfer function has

no inverse, thus making other strategies necessary if fault isolation is to continue. However, because

of the basic success of this effort, it was decided to tackle the system illustrated Figure 3.

Figure 3. The UNICORN Spacecraft and Environment Model

Vmltl

BOOST CONVERTER (1 Of %|

Figure 4. The Boost Converter

In the process of isolating faults within this more complex spacecraft, it was observed that constraint

92

propagation can be very CPU intensive. 5 In an effort to address this problem, the spacecraft was di-

vided into three separate but related causal models:

1. The Power System.

2. The ACS.

3. The External Environment.

In addition, it was observed that certain fault types have signatures that make them ideal fault model

candidates. As a result, it was further decided that some combination of deep and shallow reasoning

would be most appropriate in addressing real-time spacecraft Health and Maintenance issues. The

question now was how to best combine these techniques in an environment that would allow reason-

ing across subsystem boundaries while also supporting detection, resolution, and mission demands

not associated with fault isolation. Thus was born the UNICORN effort. Before describing that ef-

fort, however, the following sections introduce some of the non-diagnostic technologies on which

UNICORN is based. 6

2.1.2 The Blackboard Control Structure

A blackboard is much more than a shared global area. 7 It is that plus a whole collection of intelligent

agents/actors and concepts that must work together to solve a complex problem. As indicated in Fig-

ure 5, a blackboard can be divided into multiple abstraction levels called panels. Each panel can be

made to correspond to a different degree of solution abstraction. Associated with each panel are a

number of knowledge sources whose purpose is to do certain specific sub-tasks within a much larger

problem space. Each knowledge source in turn is an independent, self directed, intelligent agent

composed of a number of condition and action parts. Knowledge source communication is strictly

through the creation of blackboard events. 8 Some knowledge sources, such as fault isolators, symp-

tom detectors, and triage analysts, are domain specific while others have generally more domain in-

dependent responsibilities. Two agents/actors in particular are worthy of note. These control knowl-

edge sources are:

5. Within the model illustrated in Figure 3, as necessary, each identified component was itself modeled. For
example, as illustrated in Figure 4, the Boost Converter within the Power System is itself made up of
interacting components. At the lowest level, each component is associated with a constraint equation. This
transfer function is used to provide the quantitative behavior of that component. It is the interaction of these

component constraint equations that provides the overall subsystem behavior.

6. Because of space considerations, we will not detail UNICORN's model directed reasoning or classification
problem solving techniques at this time. The reader is directed to the references documented at the end of this
paper for a description of these technologies.

7. For an excellent general description of basic blackboard technology, references 7 and 9 are highly
recommended by the author.

8. Within UNICORN, these events are produced through the use of object demons, and each blackboard panel is
an object within an associative network. Panel objects are grouped together to form individual blackboards.

93

1. The blackboard handler.

2. The agenda scheduler.

The function of the blackboard handler is to initialize its assigned panel and to keep it clean and free

of stale information during normal processing. Within UNICORN, this knowledge source is mod-

eled as an expert system with its own local context and its own set of cleanup scripts. These scripts

identify significant blackboard events and specify what must be done when they occur. Each black-

board handier is dedicated to a single panel, and so its input and output levels are identical. The acti-

vities of each blackboard handier as well as those of the other knowledge sources are controlled by

an agenda scheduler/(blackboard monitor). Within UNICORN, there exists one agenda scheduler

per blackboard. 9 The purpose of this knowledge source is to maintain the focus of attention of the

other knowledge sources assigned to that blackboard. It performs this task by controlling the admin-

istration of the agendas within each blackboard panel. When a knowledge source detects an event

or sequence of events about which it is interested and is in a position to act upon, it makes a bid to

do so by placing a Knowledge Source Activation Request (KSAR) on the agenda associated with its

assigned panel. This blackboard object describes what the bidding knowledge source intends to do

if given control and provides an estimate of the affect that its application will have on the portion

of the overall problem solution within its limited scope of control. In addition, also contained within

the KSAR is an estimate of how much it will cost the system in terms of CPU utilization, solution

time, and/or memory space if the associated knowledge source is allowed to execute. The agenda

scheduler uses the information contained within the KSAR, along with its own knowledge, posted

control directives from higher level monitors, and possible past experiences with the bidding knowl-

edge source, to accept or reject the bidJ °

If a bid is rejected by an agenda scheduler, the bidding knowledge source simply waits for another

chance to bid again at some later time when its chances of success may be better. If, however, a bid

is accepted, the knowledge source is given control and performs the action(s) described in the posted

KSAR. The result of this action may be one or more blackboard events within that knowledge

source's assigned panel or within another panel of its associated blackboard. The events so produced

may cause yet other knowledge sources to become active. Two knowledge sources that cooperate

in this manner are said to have overlapping areas of interest. For cooperative problem solving to

work, each knowledge source must produce something that is of interest to another agent either with-

in its own panel or within another panel in its assigned blackboard.

9. As indicated in Figure 5, UNICORN is composed of more than a single blackboard.

10. Each Agenda Scheduler within UNICORN is given a limited resource budget, which it can use to achieve
assigned objectives. Any overdrafts must be covered from surpluses available through other agents.

94

Figure 5. Some UNICORN Blackboards

2.1.3 Thematic Reasoning

Thematic reasoning wasfirst proposed by Rodger Schank as a mechanism for story understanding.

In this application domain, themes axe utilized to generate expectations about the predicted behavior

of an actor (Schank, 1977). Themes can produce these expectations because they can be made to

contain background information upon which actor goal predictions can be made. A theme may be

programmatically represented as a collection of related goals or even as a generator of these goals.

Schank described three types of theme:

1. Role themes

2. Interpersonal themes

3. Life themes

Of these, the f'u'st two were extensively utilized within UNICORN. In a role theme, an actor's goals

are determined by its role. Once a role is adopted, it sets up expectations about the goals and actions

of the role player. Within a blackboard control structure, each knowledge source may be viewed

as an actor playing a role. For example, within UNICORN the following actors are resident: II

11. These are just the agenda schedulers. There are many other actors, some of which will be introduced in the
following sections.

95

1. ACS Manager

2. EPDS Manager

3. Payload Manager

4. Bus Manager

5. Mission Manager

These actors have specific control related roles, and when a significant event occurs it triggers each

to act out that role. For example, the Payload Manager may pass (i.e., MTRANS) a request to the

Mission Manager to perform an activity that may in turn result in a resource request of the Bus Man-

ager. Likewise, a fault may be detected within the ACS that could cause the ACS Manager to inform

the Bus Manager of a potential problem. The BUS Manager may in turn ask another actor to deter-

mine if related symptoms have been detected in the spacecraft subsystem to which it is assigned.

As illustrated in Figure 6, themes are important within UNICORN because they generate the goals

that drive the different knowledge sources. These goals are indexed to produce the plans that de-

scribe how the identified goal is to be attained. UNICORN utilizes theme related scripts within role

objects to determine what actions are required to attain a goal. Any goal may be associated with any

number of strategies for its attainment. The strategy selected will depend upon the role being played,

the current directive being followed, and the emotional and/or physical context of the actor. An actor

may decide to suspend its role in certain circumstances.

ALTERNATE
•crlrRAT EGIES

.. _ _

....

-_ EVENT SLOT 10]

PANNEL 1

EVENT SLOT 03

EVENT SLOT 02

EVENT SLOT 01

EVENT SLOT 00

PANNEL 0

SPACECRAFT TELEMETRY

Figure 6.

KS3/AS

KS!

THEME B

°II12

i

THEME C

i I....

I
Themes Produce the Goals In Response to Blackboard Events

Role suspension can occur if an interpersonal theme gets invoked. An interpersonal theme consists

of a set of test-action pairs where the test is defined as a blackboard event that is indicative of a physi-

cal event that threatens the functionality of the spacecraft. The action is the generation of one or more

goals that will in turn produce associated plans that eventually cause a physical change to occur with-

in the spacecraft. For example, an interpersonal theme like Exhibit-Team-Spirit can cause an agent

like the ACS Manager to give up some or even all of its temporal resources in support of a teammate

being threatened with the loss of its own subsystem's functionality. This would be done even though

the role of the ACS Manager is to look after only ACS functionality. Thus Thematic Reasoning al-

lows UNICORN to represent control knowledge explicitly, change task priorities, reaUocate re-

sources, select KSAR's for execution, and in general react to changes within its dynamic real-time

environment.

3.0 SYSTEM FUNCTIONAL DESCRIPTION

The core of the UNICORN system was meant to be placed eventually either on board some future

spacecraft or within a ground station wherein it would act as a performance analyst's advisor. Al-

though designed to eventually control all spacecraft functionality, only those object level knowledge

sources involved either in diagnosis or related mission management activities have been completed

as of this writing. UNICORN's basic external architecture is illustrated in Figure 7. Within this Sym-

bolics-based system, spacecraft and environment behavior is produced through the utilization of

quantitative simulators. The environment simulator produces output that is utilized by the spacecraft

simulator to produce subsystem behaviors. These axe presented to the blackboard process as clock

pulses, simulated telemetry packages, and contexts that are unpacked and utilized to produce black-

board events and to drive the diagnostic models. As indicated above, the blackboard paradigm has

been utilized to coordinate the activities of a number of knowledge sources and to realize the best

problem solutions traded against costs, such as time required to solve a problem and CPU utilization.

In addition, the control structure developed can handle probable cost solution value changes that

may result due to temporal aging, physical re-configuration and critical emergency situation

changes. To perform these tasks, UNICORN utilized a blackboard structure that was modeled as a

conceptual taxonomy in which responsibility is divided along the diagnostic and managerial lines

illustrated within Figure 8.

The best way to understand how the blackboard paradigm is utilized within UNICORN is to consider

the real-world environment of which it is a model. Within this environment, console operators moni-

tor incoming spacecraft telemetry, scanning certain key observational items for signs of trouble. If

these are detected, other normally not actively monitored telemetry points are more closely ex-

amined. If a true anomaly is identified, management may request subsystem specialists to further

isolate the anomalous behavior to one or more specific subsystems. For critical situations, more than

a single expert may be utilized. Each of these individuals may apply a different problem solving

technique to arrive at a conclusion. If multiple subsystems are involved, other experts who under-

stand BUS and payload interactions at a much deeper level than do the individual subsystem experts

may be consulted. Once a fault is isolated, corrective actions can only be taken after considering

97

possible inter-system ramifications. Thus while recommendations may be made at lower levels, the

final decision as to the corrective action to pursue is made higher in the hierarchy, after review of

all options.]2

Figure 7. A High Level View Of UNICORN Component Parts

Figure 8. One Way In Which UNICORN's Blackboard Structure May Be Viewed

To support the task flow outlined above, UNICORN's blackboards are arranged hierarchically, as

illustrated within Figure 9. At the lowest leaf nodes of this taxonomy are those blackboards asso-

ciated with the BUS subsystems mentioned in section 2.1.1. Each of these blackboards has been di-

vided into three levels of abstraction corresponding to the different phases of diagnosis (i.e., detec-
1

12. Actually, the level to which a fault is propagated depends on the estimated impact on mission success. Higher

level agents are only made aware of problems if they exceed the scope of conlrol of a lower level agent.

tion, hDlatim, and n:solulkm/Im)gn_is). Within panel 0 of these blackboards are three symptom

(k:teclmx. The first is a limit chocker, tbe second is a trend analyzer, and the third uses constraint

m identify symptomatic behavior. 13 The first and second utilize fixed context specific

limits to _ incoming telemelxy. The second requires a number of telemetry frames to detect a

symptom while the first needs only one. Both, however, are not usable immediately after a failure,

unk_ _ wJaxafion is evoked. The thigd can be used even after a failure but is CPU intensive

and is normally allowed to execute only in situations where the other two can not operate.

Panel 1 oftbe above--mention_ blackboards has currently assigned to it two fault isolators. The first

employs extgrienfal rules to isolate a set of apriori defined faults, while the second employs model

directed remmming for fault isolation. The first is not always guaranteed to find the cause of an anom-

alous behavior, but when it does, it does so relatively quickly. The model directed analyst is more

likely to always isolate a fault within its causal model but is CPU intensive and may take a consider-

able time to isolate certain faults within its domain of application.

Figure 9. A Taxonomy of UNICORN Blackboards

Panel 2 contains a causal analyst and another agent which performs prognosis. The causal analyst,

examines the causal network created within the first two panels and attempts to identify the cause

of the fault. 14 All agents within a BUS subsystem associated panel adopt a closed world assumption

13. In addition to the knowledge sources mentioned, each panel is associated with the control level agents
described in section 2.1.2.

14. The output of each diagnostic agent is a linked list of hypothesis elements which are arranged within a causal

netwodk. This makes Ihe fault hypothesis explicit and readable by lhc other diagnostic elements. When
multiple agems anive at the same diagnostic conclusion, a numeric confidence level related to that hypothesis
is iEnmmmled. If it lures out Iha[an agem's h_ faults are correct, that agent has its reliability
incnmnealed, ff it turns out to be wrong, the agent's reliability is decremented.

W

and assume the fault, if it exists, resides within its own domain of application. The output of this

panel consists of one or more recommendations that are passed up to the BUS Manager for review

and acceptance or rejection.

Above the BUS subsystem-related blackboards, within UNICORN's blackboard taxonomy, is the

BUS Manager's Blackboard. Associated with this blackboard are an number of knowledge sources

whose purpose is to reason about faults that seem to cross subsystem boundaries. At this level, the

physical environment of the spacecraft is examined as the possible cause of an anomalous behavior.

This blackboard is controlled directly by the BUS Manager, whose purpose is to ensure the smooth

working of all BUS subsystems. The BUS Manger performs its task by utilizing Thematic Reason-

ing to determine what goals are necessary and and how they should be pursued. By utilizing a strate-

gy appropriate to the urgency of the situation as seen by itself, its subordinates, and its superior, the

BUS Manger can in effect be given an understanding of the importance of its decisions. This is very

significant in an environment wherein there may not always be a single answer to a question. Once

the BUS Manager, in association with its Health and Maintenance team, has reached a conclusion

about what recovery actions are necessary to address a diagnostic situation, it reports them to the

Mission Manager. 15

It is the Mission Manager that is actually given an understanding of mission objectives. This is done

by identifying to it which events indicate successful mission accomplishment and which indicate

a threat to that objective. The Mission Manager controls the highest level blackboard within the

UNICORN blackboard taxonomy. From this vantage point, it receives inputs from, and makes de-

mands, of both the BUS and Payload Managers relative to the performance of their assigned space-

craft systems. Depending upon the nature of the reports received, the Mission Manger may change

emotional context and in turn make decisions that result in orders or directives to its subordinates.

The Mission Manager may approve or reject a subordinate's recommendations based on its wider

understanding of the overall spacecraft operation.

4.0 LESSONS LEARNED

Many lessons have been learned as a result of this effort the following is just a partial list of some

of the most interesting ones relative to UNICORN's utilization of the blackboard control paradigm:

1. A blackboard control structure does indeed allow multiple knowledge sources with different

problem solving paradigms to work together harmoniously.

15. The BUS Manager is given a time budget by the Mission Manger to arrive at a diagnostic conclusion. It
distributes this budget among its subordinate agents. If time appears to be running out, the BUS Manager
can halt further investigation and report the current best hypothesis to the Mission Manager. This suggested
action will be associated with some degree of confidence. The Mission Manager can than decide to go with
the recommendation or else ask for further analysis, if further resources are still available.

100

2. Local contexts make sense within a blackboard environment, as they provide a knowledge

source's own working area for solution derivation.

3. Solutions with higher confidence factors can be produced through cooperative problem solving.

4. A blackboard environment does indeed support distributed knowledge source development.

5. It is vital that the system be hosted on a CPU with sufficient space and horsepower to allow it to

operate in a real-time environment.

6. Avoid toy problems, they produce toy solutions.

7. The selection of system goals and task priorities must be allowed to change based on the situation

at hand and cannot remain static.

8. Autonomy within a complex system requires the distribution of functionality among multiple

agents, each with a world view and scope of control limited to its assigned role.

9. Blackboard construction from scratch is difficult and is no longer recommended.

5.0 FUTURE DIRECTIONS

There are a number of enhancements that would gready improve the current UNICORN system. The

fast is to move the system from its current Symbolics environment to a SPARC workstation or equiv-

alent processor. In addition, it is recommended that the KEE-based blackboard architecture be re-

placed with one based on something like GBB by Blackboard Technology Group, Inc. These modifi-

cations should allow the system to run much faster. Second, it is recommended that a case-based

reasoner be investigated for addition within the fault isolation panels. These systems could work

with the model directed reasoners already in place to acquire new cases automatically. Third, it is

recommended that a knowledge source that employs neural network technology be added to each

symptom detection panel within UNICORN's blackboards. These knowledge sources could poten-

tiaily replace the existing limit checking symptom detectors. The possibility of using the current

themes contained within UNICORN as a source of diagnostic explanation should be investigated.

If themes are good for understanding stories, then it would seem logical that they should also be us-

able in explaining diagnostic reasoning. Lastly, it might be interesting to go a little further and re-

place some of the pre-programmed script-based behavior currendy employed within UNICORN

with dynamically--derived plans produced in an attempt to address an event-triggered objective.

Alas, all of this however is for another day.

lOl

6.0 CONCLUSIONS

This paper has described one approach to the achievement of system level autonomy. This approach

advocates partitive analysis and the distribution of functionality between many intelligent and simi-

independent agents, each such agent having a limited world view, but having some understanding

of the value of its contributation. In the process of constructing the blackboard control structure, it

was discovered that this task was every bit as difficult as constructing the individual diagnostic

agents. To shorten the development effort, consideration should be given to the utilization of a com-

mercial blackboard building environment. It was discovered that the concept of Thematic Reason-

ing allowed for the envisionment of diagnostic agent behavior by making explicit the goals asso-

ciated with each agent. This explicit representation of functionality helped in the knowledge source

construction task.

In the process of constructing this system, many interesting concepts were explored, and much

knowledge was gained that will have definite applicability to future efforts in the area of autonomous

systems. Much work still remains to be done, however, and many questions as yet remain unan-

swered.

7.0 ACKNOWLEDGEMENTS

The work documented within this paper was supported with IR&D funding from GE ASTRO Space

Division from 1986 through 1990. The author wishes to take this opportunity to thank Robert Schule,

Jim White, Chris Sterritt, and Ben Bell for their valuable assistance in helping to bring the future

of spacecraft autonomy just a little bit closer to reality.

REFERENCES

1. Abbott K., Robust Fault Diagnosis Of Physical Systems in Operation, Phd Dissertation, Rutgers,

The State University, 1990.

2. Allen J., Towards a General Theory of Action and Time. Artificial Intelligence, 23, 1984.

3. Bell B., Gerner M., and Sterritt C., DSCS ACS Diagnostic System, Technical Information

Series, No. 87SDS003, GE Astro-Space Division, December 1986.

4. Clancey W., Classification Problem Solving. In National Conference on Artificial Intelligence,

1984.

, Davis R., Diagnostic Reasoning Based on Structure and Behavior. In Daniel G. Bobrow, editor,

Qualitative Reasoning about Physical Systems, The MIT Press, 1985.

102

6. de Kleer J. and Williams B., Diagnosis of Multiple Faults, Artificial Intelligence, 32, 1987.

7. Engelmore R., Morgan T., Blackboard Systems, Addison Wesley Publishers, 1988.

8. Erman L., An Environment And System For Machine Understanding of Connected Speech, Phd

Dissertation, Stanford University, 1974.

9. Nii H. P., Anton J. J., Signal-to-Symbol Translation: HASP�SlAP Case Study, The AI

Magazine, Spring 1982.

10. Rossomando P., Sterritt C., Johnson D., Model Based Diagnosis In An Analog Spacecraft

Domain, Technical Information Series, No. 87SDS043, Astrtr-Space Division, 05 January 1988.

11. Rossomando P., Bell B., Sterritt C., UNICORN: Spacecraft Diagnosis in a Distributed Problem

Solving Domain, Technical Information Series, No. 88SDSD002, Astro-Space Division 1989.

12. Schank R., Abelson R., Scripts, Plans, Goals, and Understanding, Lawrence Eribaum

Associates, Inc. Publishers, 1977.

103

N92-

Intelligent Fault Isolation and Diagnosis

for Communication Satellite Systems

Donald P. Tallo, John Durkin

The University of Akrcn _' 7
Akron, Ohio _i_

and

Edward J. Petrik

NASA Lewis Research Center

Cleveland, Ohio ;_ ,_

• %

2336b

ABSTRACT

NASA-Lewis Research Center recently

completed the design of a Ka-band

satellite transponder system, as part of the

Advanced Communication Technology

Satellite (ACTS) System. To enhance the

reliability of this satellite, NASA funded

The University of Akron to explore the

application of an expert system to provide

this satellite with autonomous diagnosis

capability. The result of this research was

the development of a prototype diagnosis

expert system, called FIDEX (Fault

Isolation and Diagnosis EXpert).

F1DEX is a frame-based system that uses

hierarchical structures to represent such

items as the sateUite's subsystems, compo-

nents, sensors, and fault states. This

overall frame architecture integrates these

hierarchical structures into a lattice that

provides a flexible representation scheme

and facilitates system maintenance. To

overcome limitations on the availability of

sensor information, FIDEX uses an

inexact reasoning technique based on the

incrementally acquired evidence approach

that was developed by Shortliffe during his

MYCIN project. The system is also

designed with a primitive learning ability

through which it maintains a record of

past diagnosis studies. This permits it to
search first for those faults that are most

106

PRECEDING PAGE BLAtdK NOT FILMED

likely to occur. And finally, FIDEX can
detect abnormalities in the sensors that

provide information on the transponder's

performance. This ability is used to first

rule out simple sensor malfunctions.

The overall design of the FIDEX system,

with its generic structures and innovative

features, makes it an applicable example

for other types of diagnostic systems. This

paper discusses these aspects of FIDEX,

and illustrates how they can be applied to

fault diagnostics in other types of space

systems.

Key Words: Expert System, Space Systems,

Communication Satellite Systems, FDIR Diagnos-

tics, Frame-Based, Abstract Reasoning, Learning,

Sparse Sensors, Sensor Validation

1.0 INTRODUCTION

The satellite network of the United States

supports both the commercial and military

sectors by providing an effective world-
wide communication network. The reli-

ability of this network represents a strate-

gic resource for this country and a critical
concern for the National Aeronautics and

Space Administration (NASA). Since the

mid 1980's, NASA has been investigating

the application of expert system technol-

ogy as a means for improving satellite

reliability. The principle motivation for

such work has been to develop an intelli-

gent expert system that could be placed

onboard a satellite, permitting the satellite

to perform autonomous diagnosis. Success

in this effort would offer the potential of

significantly improving the reliability of

satellite communication systems.

In the summer of 1988, NASA-Lewis

Research Center funded The University of

Akron to study the application of such a

diagnosis expert system.

1.1 Overview of Application Area

NASA has recently completed the design

of a Ka-band (30/20-GHz) communication

satellite transponder. This transponder

system is to be integrated within the

Advanced Communication Technology

Satellite (ACTS) System and deployed

early in 1993.

The ACTS transponder is a multiple

channel repeater that relays microwave

communication signals between highly

localized ground terminals; see Figure 1.1.

All references to the transponder in this

paper are directed towards the compo-

nents of the communication system that
will reside onboard the satellite.

A.C.T.5. Tron_Donder

A.c.qr.'s. A.c.'r.s.
Ground Terminol Ground Terminol

Figure 1.1 ACTS System

Figure 1.2 shows a schematic representa-

tion of the ACTS transponder. At

present, only two of the multiple channels

are implemented in its design. However,

this proof of concept design can easily be

expanded to incorporate additional links

as the system design progresses.

At present, the design of this transponder

is being evaluated within the System

Integration, Test, and Evaluation (SITE)
testbed at NASA-Lewis. The SITE

laboratory is used by NASA for validating

designs and demonstrating the capabilities

of satellite communications systems. This

phase of development is valuable to

NASA for refining the response of the

various systems onboard the transponder.

Another important aspect of SITE is the

formulation of an understanding of these

systems' fault response.

1.2 Project Definition

The goal of this research project was to

investigate the possibility of representing

the knowledge gained during this SITE

phase in a diagnostic expert system. Such

a study would then help to lay groundwork

for a future system capable of providing

the transponder with autonomous

diagnosis capability.

The research for this project progressed

according to several key developmental

phases:

1. Domain Analysis: Study the operation of the

application system under both normal and
abnormal conditions

2. Knowledge Acquisition: Study and organize the

knowledge used by the domain experts who

perform fault diagnostics on application system

3. Knowledge Representation: Design a scheme to

model the application system and represent the
knowledge required to detect, isolate, and

diagnose its fault states

4. Response Strategy Definition: Establish res-

ponse strategies and procedures for all fault
states

106

IFPC

PILl PIL2

IFPC

N
TWTA

SITE Model of the ACTS Transponder System

Ch2 UpLink

Ch2 DownLink

5. Prototype Development: Develop, test, and

modify a series of evolutionary diagnostic

expert systems

6. Requirements Definition: Define the overall

specifications for the final diagnostic expert

system

7. Final Development: Design, encode, integrate,

test, and document the deliverable expert

system

8. Life Cycle Analysis: Define and specify a

maintenance schedule for the deliverable

diagnostic expert system

During these phases of development,

several problems were encountered that

reshaped the requirements of the project.

Three problems of particular interest

resulted from the evolutionary state of the

ACTS transponder system. The require-
ments that these difficulties added to the

project, and their solutions, highlight the

major strengths of this expert system.

The first of these difficulties became

evident during domain analysis. The

expert system was constrained to work

with limited information on the operation-

al condition of the transponder. Specifi-

cally, there were only a few sensors

available to provide information on the

response of the transponder system. This
information was limited to the signal

power level sensors, indicated in Figure

1.2 as PM 1 through PM_8, and a few bit

error rate(BER) registers. This limited

information was not completely adequate

for assessing the condition of the

transponder. In short, the sensors in the

transponder were sparse in number,

compared to the other components of the

transponder system. Therefore, the

isolation of a fault to a specific component

based upon sensory information alone was

not possible. This limitation was termed

the Sparse Sensor Problem.

This problem also placed a high premium

on the reliability of sensory information.

Inconsistent or erroneous readings could

render the expert system inoperable.

Therefore, a method for resolving conflicts

in sensory data was needed.

107

A second problem was encountered during

knowledge acquisition. A prerequisite for

the development of any expert system is

an extensive understanding of the applica-

tion area. In a diagnostic application, this

requirement dictates that the potential

fault states of the system be well known.

However, the ACTS transponder was still

under evaluation, and a complete under-

standing of its fault response had yet to be
formulated. This fact constrained the

investigators to work with limited diagnos-

tic knowledge. Without a clear definition

of the transponder's fault response,

explicit diagnostic rules were not possible.

Therefore, the expert system was

prescribed to work with abstract, rather

than concrete, diagnostic knowledge.

The final problem was also a result of the

evolutionary state of the transponder

system. The problem was that changes in

the design of the system were always

possible. These changes could range from

modifications to design specifications, or
even the addition of new modules. This

situation made it difficult to develop a

robust diagnostic agenda.

Faced with these problems, the goal of

this project changed more towards a study

effort. Emphasis was placed on the

development of techniques that would

overcome these problems and permit the

expert system to reason intelligently with

only limited information. The system's

knowledge needed to be structured such

that any change in the design of the

transponder could easily be reflected in

the structure of the expert system. All of

these requirements placed a premium on

the design of knowledge representation

techniques and reasoning methods that

were general and flexible. The result of

this effort was the development of a

prototype diagnostic expert system called

FIDEX, Fault Isolation and Diagnosis

EXpert. This project demonstrated the

feasibility of developing an intelligent

computer diagnostic system not only for

the ACTS transponder, but for space

systems in general.

1.3 General Approach to Solution

The general approach taken in the

development of this project followed the

problem-solving approach used by the

ground personnel who perform satellite

diagnostics. This strategy was termed the

Modular Approach to Diagnostics. In

general, it follows the four tasks defined
below.

1. Fault Detection: Monitor the response of the

transponder to determine whether it is
functioning properly or not

2. Fault Isolation: Narrow the range of suspected

components to the smallest possible group

3. Fault Diagnosis: Investigate the precise nature
of the misbehavior and determine the compo-

nent causing it

4. Fault Response: Respond to the diagnosis in

a robust and intelligent manner

The purpose of the first task, Fault

Detection, is to detect any misbehavior in

the transponder performance. This task

involves the analysis of current sensor

information to ascribe qualitative descrip-

tions to each sensor's reading; either

"GOOD" or "BAD." These descriptions are

based on whether the data reported by a

sensor exceed a tolerance figure centered

on its nominal or expected value. Sensor

readings that are within tolerance receive

a "GOOD" description, and those that

exceed their tolerance range are labeled
as "BAD." The detection of a fault is based

upon establishing a "BAD" reading on any
sensor. This indicates that a misbehavior

exists in the transponder system and

causes the next task to begin.

108

The second task in this approach is Fault
Isolation. Its purpose is to isolate the

suspected fault to the smallest possible

group of components in the transponder.

This is accomplished through a principle

known as Error Propagation. This
principle states that the observable

symptoms of a misbehavior in a

component will propagate through all

subsequent sensors in a signal path. The
source of such a misbehavior can thus be

concluded to lie in that signal path, prior
to the detection of the misbehavior, and

subsequent to the last sensor indicating a
proper signal response.

To implement this, the isolation task

considers the qualitative description of all

sensor readings as ascribed by the

detection phase. It locates a sensor

reporting a "GOOD" reading that is

followed by a "BAD" reading. However,

because of the sparse sensor limitations,

this approach can only isolate the source
of the misbehavior to the group of

components between these two sensors.
For the purposes of this project, these

groups of components are termed

SubSystems, and are defined as the groups

of components bounded by signal power
level sensors.

The fault isolation task relies heavily upon

the integrity of the data reported by the

sensors. Should any sensor report
erroneous data, this task will fail to reach

a valid conclusion. Therefore, a
subordinate Sensor Validation task was

added to this diagnostic phase.

The sub-task of sensor validation is

designed to identify the possibility of a

faulty sensor. This ability permits the

FIDEX system to avoid the search for a

non-existent transponder fault. Sensor
validation is also based on error

propagation; however, in a slightly

different fashion. Again, a signal
producing a "naB" sensor reading at one

point in the transponder should result in a

'_.D" reading on all subsequent sensors in

that signal path. This task identifies the

possibility of a faulted sensor if a "GOOD"

reading instead is found.

In either case, the purpose of isolation is
to identify the subsystem containing the

component causing the misbehavior. If
this misbehavior is the result of a

component failure, the subsystem
identified by its input and output sensor

readings is flagged as isolated. However,

if the detected "BAD" sensor reading is the

result of a faulty sensor, isolation flags the

sensory components as the isolated

subsystem. Once the source of the fault is
isolated, the next task is initiated.

The third task, Fault Diagnosis, involves

consulting a community of diagnostic

expert systems. Each system is designed

to address the problems of a specific
subsystem within the transponder.

Determining the appropriate diagnostic

expert to be consulted is the final task of

the isolation phase.

These specialized diagnostic systems use

knowledge that is rule-based and

backward chaining in nature. The

hypotheses for these rules represent the

potential faults in the isolated subsystem.
The order in which they are placed on the

agenda is based on the history of the fault
states. Maintaining this history permits

FIDEX to pursue the most likely problems
first.

Each diagnostic system was also designed

with an ability to perform inexact

reasoning. This was done to overcome

problems that resulted from limited

information about the transponder's

performance. Such an ability was

important in that the FIDEX system

would often need to make a "guess" at the

most likely fault state.

The inexact reasoning technique chosen

for this project was based on the certainty

theory given by Shortliffe (1975), with

some modification by Durkin (1991). It

relies upon establishing incremental
measures of belief or disbelief in rule

conclusions. These two factors are then

used to establish an overall confidence

when a conclusion is supported by

multiple rules.

The final task is Fault Response. The

present strategy for fault response is to

provide recommendations for reconfigur-

ing the components or sensors. Plans are

to include the capability to reconsider

fault diagnosis if the recommended action
was ineffective. FIDEX would retain its

past diagnosis, including recommenda-

tions, and reconsider the problem with

information made available following the

corrections to the transponder.

The remainder of this paper discusses the

workings of the FIDEX system. It will

demonstrate the techniques discussed

above and, by example, show their appli-

cation to other types of diagnostic systems.

KNOWLEDGE REPRESENTATION

The diagnostic knowledge of FIDEX is

represented using both frame-based and

rule-based techniques. This section

discusses the structure of that hybrid

framework. It also provides sample code

segments describing the actual implemen-

tation in the syntax of NEXPERT Object,

the software development tool used in the

project.

2.0 FRAME NETWORK STRUCTURE

The expert system needed to be designed

such that it would easily allow the

incorporation of changes to the tran-

sponder. Therefore, it was decided that a

frame-based approach for knowledge

representation would be appropriate.

Frame hierarchies were developed to

represent the transponder's components,

subsystems, sensors, and fault states.
These hierarchies were interconnected

into a network to enrich the overall

knowledge representation structure.

2.1 Structure of Components Class

A frame hierarchy was created to provide

a clear and efficient representation of all

components in the transponder. Figure
2.1 shows this structure called the

Components Class. This figure illustrates
a convention that will be maintained

throughout in this paper. Circles

represent class frames and triangles

represent object frames. Lines indicate

links between frames, with the arrows

indicating the direction of inheritance.

The root node in Figure 2.1 is a circle

indicating a class frame called

Components. This class was created to

represent the commonality between all

components in the transponder. It is

divided into several subclasses represented

by the second level of class frames. Each
of these subclasses describes the function

of components in the transponder:

amplifiers, attenuators, etc. The

components are represented by object
frames attached to these subclasses.

The code segment describes this structure.

The first series of declarations defines the

properties that are to be used. This is not

110

a complete listing. Only the properties of
interest in this discussion are shown.

Properties were defined to describe

physical characteristics about a

component: its name, input/output

components, etc. These properties are

used by FIDEX to give a component a self

awareness. Other properties provide
functional information about the

components: its input and output signal

power levels, gain, nominal gain, etc.

The next definition creates a class frame

called COMPONENTS in the object space of

the expert system. It establishes links to

several subclasses and defines which prop-
erties will be associated with this class.

Each subclass inherits all properties asso-

ciated with the COMPONENTS class. Any

properties specific to a type of component
can be defined at the subclass level. The

definition for the ATTENUATORS class is

included as an example of this. The

SETTING property is used to describe the

variable attenuation setting of the

attenuators in the transponder system.

(@PROPERLY - COMPONglCTINN OlTP£ . Str/ng;)

(@PROPERLY = COMPON_CTOUT @TYPE = Str/ng;)

(aPROPeRTY - FAILED @TYP£ = Boolean;)

(@PROPERTY = GAIN @TYPE = Float-.)
(@PROPERTY . GAINNOMINAL @TYPE - Floor.)

(@PROPE2YY = NAME @TYPE = SU_;)

(@ PROPF2_TI' - SETTING @TYPE - Integer,)
(O PI_O P ERTY = POWER INN O TYPE = Float;,)

(@PROPERTY - POWEROUT @TYPE - Float;,)

(OCLASS . COMPONE.N'I_
(@ SUBCLASSES -

(@PROPERTIES =

(@CLA,_ = ATFENUATORS

(@PROPERTIF.I -

(@OBJECT . IFPCATl_241

AMPLIFIERS
A TI'F2_UA TORS

BERREGISTERS
C,aAs Fm

LOCAL OSCILL4 TORS

MIXERS
POWER METERS

RECEIVERS

SWIT_tiE$

TWTAS)
COMPONENTINN

COMPONF.JCT OUT

FAILED

GAIN
GAINNOMINAL

NAME

POWERINN

POWF_.ROUT))

SETT_G))

(@CLA_F_,S . ATTENUATORS))

Finally, the last definition in the code seg-

ment shows the attachment of an object

frame to this structure. An object frame
called IFPCATTEN1 is created in

the object space to represent

one of several IF signal Power
level control ATTENuators in

the transponder. This

attenuator object is assigned to
the ATTENUATORS class.

Therefore, it inherits all

properties assigned to both this
class and the COMPONENTS

class. Each component of the

transponder is represented by

an object frame in this manner.

Figure 2.1 Components Class

111

2.2 Structure of Subsystems Class

Each component is also associated with a

subsystem of the transponder (see Figure

2.2). Several object frames are used to

represent the collections of components

called subsystems. These frames are then

organized by attaching them to a class

frame for all subsystems in the

transponder. Finally, the membership of

a component in a particular subsystem is

represented by attaching its object frame

as a subobject of the appropriate

subsystem object frame.

Again, a code segment is provided to
describe this structure. Similar to the

components definition, several properties

are defined to represent both structural
and functional information about the

subsystems of the transponder.

A class frame called SUBSYSTEMS is

created in the object space of the expert

system. Properties assigned to this class

are inherited by all attached object

frames. Finally, the last definition in the

code segment shows the assignment of an

object frame to this structure.

Figure 2.2 Subsystems Class

An object frame called CH1RECEIVER-

SYSTEM is created in the object space to

represent the group of components
associated with the Channel 1 Receiver

Subsystem. Object frames to represent

the Channel 1 Receiver unit, an IF Signal

Power Control Amplifier and Attenuator,
and the Receiver Local Oscillator are

attached as subobjects of this subsystem.

(@PROP£RTlr = ISOLATED @_rpE = Boolean,)
(@PROP£RTY = RF.ADINGINN @TYPE =Str/ng;)

(@PROPER_I = READINGOUT @TYPE = Str/ng;)

(@PROPERTY = $YBSYSTEMINN @TYP£ = String;)

(@PROPERTY = SUBSYSTEMOU'r @TTPE = String;,)

(@CLASS = SUBSYSTEMS

(@PROPERTIES . GAIN
GA1NNOMINAL

ISOLATED
NAME.

POWERINN

PO WF.R OUT
READING INN

RF.ADING OUT

SUBSYSTEM INN

StlBSYS1"eMOtlT))

(@OBJECT - CHI RECEIt'T_SYSTEM

(@CLASSF.,S = SUBSYSTEMS)
(@$UBOBJECIS - CttlRCVR

IFPCAMP 1
IFPCA TTF_3Y1

RCVRLO))

As these frames represent components of

the transponder, they are attached to the
COMPONENTS class structure as well. This

linking of component object

frames to the components

world can be interpreted as an
ls-A Link. Links to the sub-

systems world represent Part-Of

Links. That is, the IFPC Amp-

lifter Is An amplifier and is Part

Of the Channel 1 Receiver

system.

This approach not only aids the

diagnostic tasks, but also

provides an efficient coding

approach. Through multiple

inheritance, each subsystem

component acquires inform-

ation from two parents. One

112

provides information on performance

while the other provides information on

structure.

2.3 Structure of Sensors Class

Two types of sensory element monitor

both the response of the transponder and

the relayed signal. The first type is signal

power level sensor. The other type

represents the data stream bit error rate

(BER) registers located within the ground

terminal systems. The information used

for diagnosis is provided by these sensors.

These sensors were represented by

creating the class structure for all sensory

components shown in Figure 2.3.

This structure is divided into subclasses

according to the two types of sensor.

Each sensor is then represented by an

object attached to the appropriate type

subclass. The code segment creates this

structure in the object space of the expert

system.

Properties are defined to describe the

DATA reported by a sensor, its NOMINAL

value, the corresponding ERROR, and the

TOLERANCE band of acceptable error mag-

nitudes. A string property called READING

is used for the qualitative descriptions that
were introduced in section 1.3.

(@PROPF._Y = DATA @TYPE = Float,)
(OPleOP_IT - FdCROIeR OTlrP£ - Float,)
(OPi_gPI_'I"I' . NOM1NAL On'PE - lqoa_,)
(OPl_OPF._'f - I_ADING @TYPE - $1rinf;)
(OPI_DPERTY • TOLERdNCE @7"YP£ = Float,)

(@CLASS - SENSORS
(OS IIB¢I.ASSES l

(• PI_)PER7"IE_ -

(@CLASS . BERSENSORS
(@SUBCLASSES -

(@CLASS - COMPONF.NTS
(@SUBCI.ASSES -

(@OBJECT - BERI

BERSEblSORS
POWERSENSORS)

DATA
F.i_OP.R
NAME
NOMINAL
READ_VG

CH I BF.RSFA_O R$

CH2BF__$F-_OI_))

BKRREGZFIT-,K_
POWE, qMETERS))

(@CLASSES - BERREGI,FI'E.RS
CHI BF.RSKN_OP.S))

(@OBJECT - PMI
(OCI.ASSE5 - POWEItMETER5

POWERSF24SORS))

Class

Powm BER
AItDUfievS Idotms IteitistoTs
Subclass Subd,tss Subd*ss

Powsr BER
Sonsors Sonsm s

Subcl,,ss Subclass

BlrK Ch.2 BElt
Sensms Sensors

Subclass Subcl_s

/

Figure 2.3 Sensors Class

113

The BER SENSORS class is also divided into

two subclasses according to their channel.

This was done to simplify the analysis of

frequency-dependent fault states. It also
demonstrates how class structures can be

cascaded to further describe component

function and organization.

Like all other transponder components,

sensory elements could potentially fail.

Therefore, each sensor is also represented

in FIDEX as a member of the component

world. The code segment shows the

definition of two sensor type subclasses in
the COMPONENTS world.

Each sensory component is represented by

an object frame. The example shows the
definition of one BER sensor, BER1, and

one signal power level sensor, PM1. These

frames are linked to their appropriate type

subclass in both the components world
and the sensors world.

2.4 Structure of Fault States Class

The transponder fault states are repre-

sented as objects in a class structure called

Fault States. This class is also divided

into several subclasses. Each subclass

frame represents the association of fault

states to component types: amplifier faults,

attenuator faults, etc. Object frames

representing the specific failure modes of

the transponder are then attached to the

appropriate subclasses. This structure,

shown in Figure 2.4, enables FIDEX to
reason about both known and abstract

faults.

The code segment that defines this

structure is nearly identical to that of the
COMPONENTS class. This is because the

type of fault state is associated with the

type of component.

The primary properties associated with the
FAULT STATES class are listed first. These

describe which COMPONENT the fault is

associated with, its INFeRence CATEGORY

or priority, and the POWER SYMPTOM
GROUP with which it is associated. A

booiean property, VERIFIED, is used to flag

fault states that have been verified by the

diagnostic process. The final property

listed is VALUE. This property is reserved

by NEXPERT. The fault states

represent the hypotheses of

rules used during diagnosis.

This property is assigned the
results of rule evaluations.

The diagnostic process reasons

with the fault state hypotheses

using two distinct techniques.
The next section discusses

these, and provides structural

information on their implemen-

tation.

Figure 2.4 Fault States Class

114

(OPI_PP.RIT. COMPONENT QTTP£ = Su._u,)
(OPI_PLTIT = IIOvl_CAT]_,ORF OT_t'PI - I_prr,)
(QP_PJ_'Fr = POW_dPTOMOI_bUP 17TPE . _q_;,)
(@P_PERTT - VERIFIED
(OPI_OPERTT = V-J--

(@CI.4SS = FAUI..TSTA7_
(QSU_I.ASSd_ . AMPLIFIK.qFAULTI_

A _A FORFA Ui..73
_.R R_GISF_ FA UL_
Az P FA UI_
LOCAL OSCILLA TO R FA UL T3
MIXER FA UL _
POWERMEFERFA ULT?_
IW_.E.W_FA ULT"S
$WITCH£ FA ULT_
7"WTAFAULTS)

(QPi_PP.RFIK_. COMPONENT
llCPR CA 71GO R ¥
NAMB
PO_SI'MPI_DM GROUP
VERIFlP.D
Wd_))

(eo_u_r'r . rvec_esueeLrF_Lu_r
(eCLASSE5. AMPLIFIERFAULTN))

3.0 REASONING TECHNIQUES

FIDEX reasons with two distinctly

different techniques. The first technique,

Absolute Reasoning, is used to establish or

reject the existence of concrete, pre-
defined fault states. The second

technique, Abstract Reasoning, is used to

recover when the diagnostic task cannot

reason effectively using the first technique.
Under such conditions, the second

technique is used to establish evidence in

conceptual fault states.

3.1 Absolute Reasoning

In general, knowledge that supports rules

in absolute terms is Associat&e Knowledge.

This type of knowledge associates
conditions with the establishment or

rejection of a conclusion. FIDEX uses

two types of associative knowledge.

The first type is Directly Associative. This

knowledge directly associates conditions

with conclusions. An example of this type

of knowledge might be: If the data

reported by a sensor reading exceeds its

tolerance band, then the sensor's reading is
"BAD."

The condition of sensor data exceeding its

acceptable range is directly associated with

establishing a "BAD" qualitative description

for that reading. Rules that represent this

type of knowledge are used to structure

the strategies of the diagnostic tasks.

However, the majority of the knowledge

used in the task of fault diagnosis is

supported by an accumulation of evidence.

This type of knowledge is Cumulatively

Associative. That is, the accumulation of

several conditions is associated with the

establishment or rejection of a conclusion.

Moreover, each condition may contribute

differently to that conclusion. An example

of such knowledge might be: A LOW

signal power level might indicate internal

phase lock failure in a local oscillator, and

A tllGH bit error rate might indicate that the

local oscillator is out of phase lock.

Neither condition can be directly

associated to establish or reject the

conclusion of an internal phase lock

failure. However, each contributes
evidence to that conclusion. When

multiple rules contribute evidence toward

a conclusion, the system must be able to
accumulate this evidence. The FIDEX

system has such an ability.

3.2 Incremental Accumulation of

Evidence

FIDEX uses the IncrementalAccumuIation

of Evidence to establish or reject

hypotheses that are supported by multiple

rules. The technique used by FIDEX

follows the work done by Shortliffe (1975)

in his MYCIN project, with some

modifications by Durkin (1991).

The first two equations given below

accumulate a measure of belief, .4B, and

disbelief, AD, in a hypothesis, n. These

115

two measures are then used by the third

equation to establish an overall

confidence, CF, in that hypothesis. These

equations work as follows.

AB(IOk = AB(H)t_ l + MB(H)t'[1 - AB(H)k_ t]

AD(H)I = AD(H)k_ 1 + MD(H)t" [1 - AD(H)I__ 1]

AB(H)k - AD(H) k
CF(H) k = [l

1 - min(aB(H) k, AD(H) k)

Rules that accumulate knowledge do not

assign boolean values to their associated

conclusions. Instead, they determine a

measure of belief, MB, or measure of

disbelief, MD, in that conclusion. These

measures represent the degree to which
the conclusion of that rule has contributed

to the establishment or rejection of its

hypothesis. The values that are assigned

to these measures range between 0 and 1.

Values close to 1 represent strong

measures while values close to 0 represent

weak measures. A value of 1 is generally

not assigned, as it results in a boolean
value for AB or AD.

Consider an arbitrary hypothesis, H, and
assume that no evidence has been

established toward belief in that

conclusion, K = 0 and AB(H)o = O.

Establishing a fact in support of this

conclusion might assign a measure of 0.2

to the belief in H, MB(H)I = 0.2. The

accumulated belief in the hypothesis

would then be: AB(H)_ = 0.2. The

establishment of another piece of evidence

in support of H might assign a measure of

0.5 to the belief in H, MB(H)2 = 0.5. The

accumulated belief in the hypothesis

would then be incremented: AB(H)2 = 0.6.

The accumulated measure of disbelief,

AD(H), is incremented similarly. However,

this accumulation would be founded on

rules that establish measures of disbelief

in a hypothesis, MD(H)k. This measure

indicates evidence in opposition of the

hypothesis.

As rules ascribe MB(H)k'S and MD(H)k'S,

and accumulated values are calculated, the

overall confidence in a conclusion, CF(H)k,

is calculated. Confidence factors range in
value from -1 to 1. A value near -1

signifies little confidence in the conclusion,

or the rejection of the hypothesis. A value

near 1 denotes a high level of confidence,

or the establishment of the hypothesis.

Values in between represent various

degrees of confidence, with 0 meaning
unknown.

The following segments of code imple-

ment this technique. First, properties are

defined to represent the MB, MD, AB, AD,

and CF values required by the method. A

string for a qualitative description of

CONFIDENCE in a hypothesis is also
defined.

(@PROPERTY = AB @TYPE = Float.)

(@PROPERTY - AD @TYPE - Float;,)

(@PROPERTY = CF @TYPE = Float',)
(@ PROPERIT - CONFIDE.NCE @TYPE - String;)

(@PROPERTY= bib @TYPE = Float;,)

(@ PROP ERIT - MD @TYPE - Float;,)

(@CLASS ,, CERTAINTYANALYSIS

(@PROPERTIF_. AB
AD
CF
CONFIDENC£
MB

MD))

(@OBJECT = IFKAMPSUPPLYFAILURE

(@CLASSES - AMPLIFIF_FAUL?S
C_TAINTYANALY1))

Next, a class for CERTAINTY ANALYSIS is

defined and assigned these properties. All

frame objects that require certainty

analysis can then be attached to this class

frame per the IFPCAMP SUPPLY FAILURE

fault state shown in the example.

The primary purpose of this class structure

is to provide the overhead required to

116

ascribe qualitative descriptions for

CONFIDENCE in a hypothesis. The

inference process for this assignment is

triggered by active facets associated with
these properties.

Methods are assigned to the MB, MD, AB,

,4D, and CF properties, and inherited by all
object frames attached to this class. Three

types of method are used. The first type,
Initial Value, defines parameters to be

used to initialize property values on reset

or initialization of the inference process.
The second type, Order of Sources, defines

procedures to be taken to establish

property values during the inference

process. The final type, Change Actions,
provides procedures to be followed when

a property value changes.

In the syntax of NEXPERT, such methods

associated with properties are called

"meta-slots." The following code segment

defines the meta-slots assigned to

CERTAINTYANALYSIS properties. They are

inherited by all object frames that are
attached to this class.

(O_dX_/" - C_/'A/W/TdNALI_IS.JUI
(e/NrryAL - o.o)
(e_guJect_s. (_,;rlwvat,, (o.o)))
(ecAcTzoHS. (De ((_AB-SJ_.PAD) i

(t-,a_(_Aa. Set.FAD))) (Sml.C."))3

(esz, o'r - C_UN'ffahr_.Lr_Aa
(O/NrrV,_. o.o)
(o,;ouJec_ - (_,n_v,,tw (o.o)))
(ec_lclx)Hs. (Do ('(aUU.&_-.rJU_AD) I

(1--_,(S_.e'.,,t& ,tF.t.r.,CP))) (X,U.,v.CF))I

(eS/,OT - CF.JCTA/NTI',INALIT/S.CJ•
(O/Nrn'AL = o.o)
(esouJ¢cgs. (e,mn_,v._,- (o.o)))
(o_c'no_vs. (ed_ (ev,,_,uv_F_ors))

(Do (e_ua_ Cms_Fa,sm)
(b_,.. C,mn_,_r,_orO)))

(e$/.o7" - CEJCr'A/H'n'AJ_IZ3"J_Ji/B
(emrrv_u.. o.o)
(e.TOUA.cex. (bJ,lh,,V,d,, (0.0)))
(e cAc"no,'v3 , (Do (_J..F.,_ . SJU.F.MB. (t - SFJ.r.,_))

(SJUl,tB))
(Je,ua (XeZ,eJa))))

(eS/.O'/" - CERT_A.-V,U.,Y3_JIID
(enVTn'AL. o_o))
(eSOURC'JI3• (R_/I_,Hd_ (0.0)))
(tC,,IC?7OH*S- (Do (SJU.F.,tD÷$ELF.MD*(I-SEt.FAD))

(_.Lr,tD))
(Ran (aUU..e'.JdrO))))

The initial conditions of the attached

objects are assured by first setting these

property values to 0. In that these objects
represent hypotheses, this establishes the

state of the system to K = 0 at both
initialization and run-time.

When a value is assigned to the MB or MD

property of an object in this class, the

change actions inherited from these slots
will fire. The equations for the accumula-

tion of belief/disbelief are evaluated, and

the result assigned to the current object's
An or ,4D property. SELF denotes the

current object in class level definitions.

The value of that property is then reset to
its run-time value, 0.

With the assignment of a new value to

either the an or At) property, inherited

change actions will fire. These actions

evaluate the equation for the confidence

factor and assign that value to the objects
CF property. And, in turn, change actions

associated with that slot fire. However,

the actions taken by that slot are more

complicated because it manipulates the

agenda.

The NEXPERT agenda is a prioritized list
of hypotheses to be pursued. When

hypotheses are placed on the agenda by

conventional means, they are pursued in

an order defined by their priority, or

inference category. However, this pro-

tocol can be overridden through the direct

assignment of hypothesis to another value.

The purpose of the change actions associ-
ated with the CF slot is to affect the

ascription of a qualitative description to

the current object's CONFIDENCE property.
This requires the evaluation of nine rules

corresponding to as many delineations.

Each rule has the same hypothesis,

Evaluate Certainty Factors.

117

First, the change actions reset the value of

this hypothesis to unknown. Then the

value of the hypothesis is assigned to

itself. Since the value of the hypothesis in

unknown, this assignment of the

hypothesis to itself forces the evaluation of

its supporting rules.

Three of the nine rules that support this

hypothesis are given in the following

sample code segment. The example

demonstrates the ascription of qualitative

descriptions for CF values near 1 and -1,

and an arbitrary range in between.

(@RULE = RULE23 EVALUATION OF CEI_AINTY FACTORS
(eL_ . (• (_CU;UU_rFAULT.N4M_CF) (0.9)))
(eW_O - £_a_Ccna/MyFaOm)
(tRRS. (Lit (_CURRENTFAULTJCAME_CONFIDENCE)

(ItES'I'._.ISlI_"))
(Let (_CURRENTFAULTJOLIdE_VERIFIED)

(T_UE])])

(@RULE • RULE24 EPALUATION OF CERTAINTY FACTDP.S
(OU'l$. (s (_C.URRENTFAULT.NAMI_.CF) (-0.9)))
(O/n"/_O • _a/m_C,n._r/Faom)
(01ul$ = (Lit (_CU_FAULTJOLME_CONFIDENCE)

(nP.EJI_'TRDM))
(1.41(_CU_i_HTFAULTJ_IME_YE_FI£D)

(FALSE))))

(QRULE = RULR 27 RVAIJ_TION OF CERTAIN'IY PAC7DRS
(eLliS - (• (_CURRENTFAULT_E_CF) (OJ))

(< (_CUlUU[NTFAU£TJf,_iB_CF] (0,75)))
(om?o. __Fa_..)
(QRH$ = (Ltt(_CURRKNTFAULTJ_LME_CONFIDENC8)

(nl_SIBI.._l))))

The conditions, @LHS, of RULE 23 will

be true if the value of the I CURRENT

FAULT.NAMEI'S CF is greater than or equal
tO 0.9. CURRENT FAULT is a blackboard

object in FIDEX. Prior to the assignment

of any certainty analysis measures, the

name of the current fault state is posted to

the NAME property of this object. This

generic rule looks to the blackboard to
determine the name of the current fault.

Its CF is tested and the hypothesis

accordingly established or rejected.

If the hypothesis is established, several

actions are taken, @RHS. These actions

first assign a qualitative description of

"ESTABLISHED" tO the CONFIDENCE

property of the current fault. Then its

VERIFIED property is set to TRUE. These

rules are non-exhaustive. Therefore, the

firing of one rule will terminate the

evaluation of certainty factors.

RULE 24 evaluates a CF value at the oppo-
site end of the scale. If this value is less

than or equal to -0.9, the confidence in the

hypothesis is described as "REJECTED" and

its verification property is set to FALSE.

The final rule, RULE 27 given as an

example, shows the evaluation of a

certainty factor in a range between those
bounds. This rule states that if the CF of

the current object is less than or equal

0.75 and greater than 0.5, the confidence
in the current fault state is "POSSIBLE."

This level of confidence is not sufficient to

establish or reject the fault. Therefore, no

assignment is made to its verification

property.

Discussion to this point has been on the
incremental accumulation of evidence

toward concrete fault states. The next

topic will discuss the application of these

techniques for abstract reasoning.

3.3 Abstract Reasoning

In general, knowledge that supports rules

in abstract terms is Conceptual Knowledge.

This type of knowledge is Indirectly

Associative Knowledge. It associates
condition to abstract ideas that are

indirectly related to the rule being

pursued. An example of this type of

knowledge might be: A HIGH bit error rate

is typical of a misbehavior in one of the

frequency conversion components.

FIDEX uses this type of reasoning to
establish levels of confidence in class level

118

fault categories. That is, it might reach a
conclusion of the form: The observed

symptoms are typical of those associated

with a failure of the local oscillator.

During the diagnostic task, FIDEX

exhausts its knowledge about the fault

states of the system. It is entirely possible

that a failure mode might occur for which

FIDEX has no knowledge. In that case, it
would resort to confidence accumulated in

class level fault states as its diagnostic
conclusion.

This abstract reasoning ability of FIDEX

is implemented as follows. First, all of the

fault state type subclasses defined in
section 2.4 are attached as subclasses of

the class CERTAINTYANALYSIS. Therefore,

they inherit this class overhead.

By doing this, measures of belief and

disbelief can also be assigned to the class

properties. Levels of confidence can then

be accumulated at this class, or concep-

tual, level. An example of such an assign-

ment is given in the following rule.

This is a directly associative rule that

establishes a qualitative description for the

bit error rates during diagnostics. One of

several hypotheses that are indirectly

associated with concluding a "HIGH" bit

error rate is that this symptom is associat-
ed with the class of LOCAL OSCILLATOR

FAULTS. Therefore, the last two actions of

this rule assign a measure of 0.3 to the

belief that the fault is associated with a

local oscillator.

(@RULE = RULE47 HIGH BIT ERRORR RATE

(@LHS - (,: (<ICHIB£RSF, NSOP, S]>.RATE) (0.01)))

(@HYPO = Btt Errorr Ra_ Are HIGH)

(@RtlS . (Let (<ICHIBF.RSENSORS]>.RA2]S) (IHIGH _))

(Let (CURRENTFAULT.NAM£) (//ILOCALO$CILLATORFAULTSf'))
(Do (0.3) (_CURI_NTFAULT.NAME_dB))))

(@SLOT - IFPCAMPSUPPLYFAILURE

@INFATOM = IFPCAMPSUPPLYFAILURE.INFR CATEGORY;)

Using this technique, FIDEX can piece

together information and reach conceptual

conclusions such as the one given above.

The final topic in this section is the repre-

sentation of FIDEX's learning capacity.

4.0 LEARNING & SEARCH STRATEGY

There are two databases used by FIDEX.

One contains information required to

initialize parametric values of the system.
Each record contains information on

nominal readings, error tolerances, and

other initial parameters. These values are

loaded and stored in the appropriate slots

of objects at runtime or when FIDEX is
initialized. This method of initialization

was chosen to facilitate the maintenance

of the system.

The second database is used to provide

FIDEX a limited learning capability.

FIDEX stores the failure history of the

transponder system in this database. Each

known fault state is represented by a

record that contains fields that represent

the failure history of that fault state.

Following diagnostics, FIDEX increments

the history of the identified fault. This

record keeping is used to direct the search

strategy of future sessions toward the most

likely faults.

The search strategy is adaptive in that the

priorities by which known fault states are

placed on the agenda is based upon the

values maintained in the history database.

A class level property of all fault states is

the integer INFR CATEGORY. The value of

this property is retrieved from

the database when the diag-
nostic task is initialized. This

property is then assigned to the

inference priority of the fault

state hypothesis by slot actions.

The previous example shows

119

such a slot for one fault state.

state inference atoms are

initialized.

All fault

similarly

When the diagnostic task establishes a

known fault state, the value of its

inference category is incremented

accordingly. The updated value is then

stored in the learning database.

5.0 SUMMARY

The prototype FIDEX system is the result

of a study effort by The University of

Akron, funded by NASA-Lewis Research

Center. Its purpose was to demonstrate

that expert system technology can be

applied to enhance the reliability of

satellite communication systems, in

particular, the Ka-band Advanced

Communication Technology Satellite

Transponder.

The initial goal of this research was to

develop and expert system to provide this

satellite with autonomous diagnosis

capability. As limitations prevented the

autonomy of FIDEX, the project became

more of a study effort. Its goal changed

towards the development of techniques to

overcome several limiting problems.

The resulting system used hierarchical

frame-based structures to represent the

structure and operation of the satellite.

Other strengths of FIDEX included its use

of inexact reasoning techniques, its

primitive learning ability, and its capacity

for detecting abnormalities in sensors.

The overall design of the FIDEX system

made it an applicable example for other

types of diagnostic system. This paper

discussed these aspects of FIDEX, and

illustrated how they could be applied to

fault diagnostics in other types of space

systems.

REFERENCES

Duridn, J, Tallo, D.P., Petrlk, Ej., "FIDEX: An

Expert System for Satellite Diagnostics," Space

Communications Technology Conference Onboard

Processing and Switching, NASA Conference
Publication 3132, Cleveland, Ohio, November 12-

14,(1991)

Harmon, P., Maus, IL, Morrlssey, W.,

Systems Tools & Applications, John Wiley & Sons,

New York, New York (1988)

Kerczewski, R.J., Fujikawa, G., "Performance Mea-

surements for a Laboratory-Simulated 30//20 GHz

Communication Satellite Transponder, '° 13th AIAA
International Communication Satellite Conference,

March (1990)

Pfleeger, S.H., Software Engineering: The .Produc-

tion of Oualitv Software, Macmillan, New York,

New York (1987)

Shortlife, H.H., Buchanan, B.G., "A Model of

Inexact Reasoning in Medicine," Mathematical

Biosciences, Vol.23 (1975)

Waterman, D.A., A _Guide to Exp.._. _,

Addison-Wesley, Reading, Massachusetts (1986)

120

Image�Data
Classification�Interpretation

121

s92- $366
FEATURE DETECTION IN SATELLITE IMAGES USING NEURAL NETWORK

TECHNOLOGY

ABSTRACT

Marijke F. Augusteijn and Arturo S. Dimalanta

Computer Science Department

University of Colorado at Colorado Springs , 't _) : t' ,: _ :

This report describes a study of the

feasibility of automated classification of

satellite imagesL Satellite images were

characterized by the textures they contain.
In particular, the detection of cloud tex-

tures was investigated. The method of

second-order gray level statistics, using

co-occurrence matrices, was applied to

extract feature vectors from image seg-

ments. Neural network technology was

employed to classify these feature vectors.
The Cascade-Correlation architecture

was successfully used as a classifier. The
use of a Kohonen network was also inves-

tigated but this architecture could not re-

liably classify the feature vectors due to

the complicated structure of the classifica-

tion problem. The best results were ob-

tained when data from different spectral
bands were fused.

Keywords: Image Classification, Texture

Analysis, Neural Networks.

INTRODUCTION

123

The extremely large volume of

satellite image data that has been pro-

duced to date is difficult to classify for

users. As an example, it has been esti-

mated that only 5% of the Landsat im-

ages have ever been viewed by humans.

Therefore, the ability to automatically

classify satellite images is of keen interest

to all potential users. If a computer could

sort images by topic and posaibly
f

_lThis project was funded by CTA, Incorporated.

associate them with a level of interest

(given some objective) then a human user

would only have to search through a pre-

selected set. This project is a feasibility

study with the main purpose to determine

if a specified feature can reliably be de-

tected in a satellite image by computer.

An important task is to determine

an appropriate set of features. Although

it is sometimes important to detect actual

objects in satellite images, most features

are mainly visible as textures. For exam-

ple, the waves in the ocean are observed

as a texture, various forms of land (urban,

agricultural or forests) appear as different

textures, and the clouds in the sky form
yet another texture. Thus, texture
identification seems a valid means to clas-

sify images. This feasibility study will
focus on the identification and discrimina-

tion of a single, possibly noisy texture.
The feature selected is the texture of

clouds. Clouds are particularly interest-

ing because they do not necessarily cover

an area. Clouds can be dense or sparse.

When the clouds are sparse it will be

possible to partially see through them and
observe the surface below. In this case,

the cloud texture will be intermixed with

other textures. Thus, an automated tech-

nique for cloud identification must be

capable of dealing with a considerable

level of noise caused by these other
textures.

Cloud detection and classification

have been studied by many researchers

(Goodman and Henderson-Sellers, 1988,

and Rossow, 1989). Satellite observations
of clouds have been utilized in atmo-

spheric research ever since the first satel-

PRIECEDtNG PAGE BLAI'_K NOT FILMED

)

,/

lite images were returned. Satellite

images showing cloud formations are

characterized by high variability of tex-

ture, irregularity of shapes, and a high

level of boundary ambiguity, complicating

cloud detection. Some researchers (Lee

et at, 1990), have gone beyond the identi-
fication task and have classified cloud tex-

tures as stratocumulus, cumulus, or cirrus.

Accurate cloud detection is important for

weather forecasting and the study of

global changes in climate. In addition,

there are other phenomena that produce

cloudlike textures. For example, the

smoke produced by a forest fire may look

like a cloud. Also, the vapors released by

volcanic eruption will be cloudlike in ap-

pearance. If clouds could be successfully
identified even when mixed with other

textures, it is expected that the same

techniques will be applicable to the detec-

tion of large fires and volcanic activities.

Texture Identification

Texture identification has long

been recognized as an important means

for image classification, and many tech-

niques to measure texture are available

(Weszka et al., 1979). A fairly simple

procedure that has been successfully used

by many researchers is second-order gray

level statistics (Haralick et aL, 1973). This

method is defined in the spatial domain
and takes the statistical nature of the tex-

ture into account. A set of co-occurrence

matrices is calculated, which measures the

frequency of the simultaneous occurrence

of two specified gray levels at two desig-

nated relative positions in an image seg-

ment (displaying the texture). Generally,

four different matrices are used, each

computing the frequency of gray level co-

occurrence at neighboring positions in

four different directions (horizontal, ver-

tical, and along the two diagonal direc-

tions of the image).

A variety of measures can be em-

ployed to extract useful textural in-
formation from these matrices. Haralick

et al. (1973) define fourteen different
measures but consider four of them most

useful. They are the angular second mo-

ment (sometimes called energy or homo-

geneity), the contrast, the correlation, and

the entropy of a texture.

Neural Networks

Neural networks have recently be-

come popular as general classifiers. For

example, they were used in a cloud classi-

fication study (Lee et aL, 1990). The ap-

peal of neural networks as pattern recog-

nition systems is based upon several con-

siderations. They appear to perform as
well or better than other classification

techniques and require no assumptions
about the nature of the distribution of the

pattern data. A comparison of neural
networks to classical methods like K-

nearest neighbor and discriminant analy-
sis has shown that neural networks can

achieve equal performance using a much

smaller set of training data (Lee et al.,

1990). They have the capability to learn

extremely complex patterns and are also
suitable for multi-channel data fusion.

An important task is the selection

of a neural network architecture appro-

priate for the application. Pattern recog-

nition is often accomplished by means of

a feedforward architecture. This type of

network has its processing elements orga-

nized in different layers. The bottom

layer accepts an input pattern and calcu-

lates the activations and outputs of its

processing elements. The output values

are then passed to the next layer, which

performs a similar task. This continues

until the top layer is reached. The output

of the top layer represents the classifica-

tion of. the given pattern. The layers be-

tween top and bottom are often called

hidden layers and are responsible for the

124

correct mapping between the input
patterns and their classifications. The
most familiar architecture in this class

consists of three layers in which consecu-

tive layers are completely connected, as

shown in Figure 1.

Output layer

Hidden

algorithm attempts to find a global mini-

mum of the total error, it may get trapped
in a local minimum from which it cannot

escape. Also, correct execution depends

on the assignment of an appropriate

number of nodes to the hidden layer(s).

However, determining this number is

more an art than a science. Many

researchers have attempted to improve on

backpropagation. One of these more

recent architectures (Cascade-Correla-

tion) is used in this study.

Figure 1.

Input layer

Processing elements and

connections organized as a

three layer neural network

The correct mapping is acquired

during a training phase. In supervised

training, the input patterns and the asso-

ciated desired outputs are presented to

the network. The network will update the

connection strength between the pro-

cessing units based on the difference be-

tween the desired and current outputs

(the current measure of error). The most

well-known updating scheme is back-

propagation, which calculates an error

measure at the output nodes and dis-
tributes this error back to the hidden

nodes (Rumelhart et al., 1986). However,

although backpropagation has been used

in numerous successful applications, it has

several disadvantages. This learning

method is extremely slow. The patterns

that form the training set need to be pre-

sented many times, often thousands of

times, before the network convergences

to a solution. Sometimes, the correct

solution will not be found. Although the

The Satellite Images

The set of satellite images used in
this research consists of five scenes in

both visible and IR spectral bands. They

were obtained by an Advance Very High

Resolution Radiometer (AVHRR) in-

strument. Images were available in five

spectral bands. The wavelengths of each
band are shown in Table 1.

The five scenes were obtained

from the Great Lake area of the United

States, the Atlantic Ocean, Barrow,

Siberia and the Polar Cap. These scenes

contain a variety of surface types, includ-

ing clouds, water, sea ice, and land.

Three of them show appreciable cloud

cover with large variations in density. In

areas containing sparse clouds, the un-

derlying surface is clearly visible. Differ-

ent types of surfaces appear through the

cloud cover. Especially the Polar Cap

scene, showing clouds against a back-

ground of ice, appears a challenging

classification problem even for humans.

Table I. Satellite Sensor Wavelength (/J m)

Satellite Band Wavelength

Channel 1 0.58 - 0.68

2 0.725 - 1.1

3 3.55 - 3.93

4 10.5 - 11.3

5 11.5 - 12.5

125

ARCHITECTURES FOR TEXTURE

ANALYSIS

A successful architecture de-

veloped to improve the slow learning

characteristics of backpropagation is Cas-

cade-Correlation (Fahlman and Lebiere,

1990). Like backpropagation, it incorpo-

rates supervised learning and has proved

to be a powerful classifier. However, su-

pervised learning generally does not re-

veal the underlying structure of the

classification problem. In the simplest

case, the various patterns will form dis-
tinct clusters with each cluster corre-

sponding to a different class. However, it

may happen that the clusters overlap.

Then, the patterns belonging to the

different classes are not well separated

presenting a challenging problem to the

classifier. In this case, a supervised

architecture will experience more diffi-

culty in learning the classification (and

may even fail) but it will not show how

the different classes relate. A self-orga-

nizing network like the one designed by

Kohonen (1988) will show this underlying

structure. This architecture employs un-

supervised learning and organizes its units

to reflect the relative configuration of the

patterns.

The Cascade-Correlation Architecture

The Cascade-Correlation (Cas-

cor) network is a dynamic architecture

that incrementally builds its internal

structure during training. Thus, the pro-

grammer need not be concerned with the

appropriate number of units in the hidden

layer(s) because the network itself will

allocate the number of nodes required to

solve the problem. The essence of the ar-

chitecture is the following. Training in

Cascor begins with the consideration of

only two layers (input and output). They

are fully connected and these connections

are trained until no significant changes

occur anymore. If, at that point, the total

error is still unacceptably high, a hidden

node will be positioned between these

layers. The input connections to the new

node are trained first. The algorithm at-

tempts to maximize the correlation be-
tween the new node's activation and the

output error of the network so that the

new node may make up for the residual

error to the greatest possible extent. The

output connections are then trained by

means of the quickprop algorithm, a sec-

ond-order improvement to backpropaga-

tion (Fahlman, 1988). Hidden nodes are

added, each one in its own separate layer,

until the total error is below a preset
threshold. Each hidden node is con-

nected with all previously assigned hidden

nodes, as well as with all input nodes, and

is trained in isolation. Once trained, its

input connections are frozen. Each hid-

den node is also connected with all output

units. All output connections are trained
after each addition of a hidden node. The

basic architecture is shown in Figure 2.

The resulting network is fast and capable
of reliable classification.

Output Nodes

+1

Input
N,

Hidden _, _

Nodes]_

) _ r: _-

126

Figure 2. The Cascade Architecture
The vertical lines sum all

incoming activations.

The initialization of the con-

nection strengths is performed randomly

between certain preset bounds. Thus,

when Cascor is run several times on the
samedata set, a different number of hid-
den nodes may be generated. These dif-
ferent runs are referred to as trials. Dif-
ferent trials, although trained on the same
data set,may show different performance
when usedto classifythe testdata.

The Kohonen Self-Organizing Map

The Kohonen self-organizing map

facilitates a better understanding of the

underlying structure of the classification

problem. This method provides a means

to project a high dimensional vector space

onto a lower (usually two) dimensional

space which is simple to represent graphi-

cally. It creates a topology preserving

map in which units that are physically lo-

cated next to each other will respond to

input patterns that are likewise next to
each other.

Competitve layer

/o o o o o/

o/OOO7
2,

0 0 0 0

/oooo/
I

_Input layer

Figure 3. The architecture of the

Kohonen Self-Organizing Map

The architecture consists of an in-

put layer that is the size of the input

pattern. This layer is completely con-

nected to a (generally) two-dimensional

organization of units as shown in Figure 3.

The units in this second layer are com-

petitive; that is, each one calculates an ac-

tivation based on the input pattern and

then enters into a competition with the

other units in that layer. Each unit also

represents a pattern, stored as the

127

strengths (weights) of the connections

leading to that unit from the input layer.

The activation calculated by each one is

proportional to the similarity between the

input pattern and its stored pattern. The

unit with the highest activation (whose

stored pattern best approximates the cur-

rent input) wins the competition. The

winning unit as well as the units in its im-

mediate neighborhood are selected for

learning; that is, their weights are ad-

justed.

The architecture is initialized by

assigning random weights (within certain

preset limits) to all connections. Initially,
it will be random which unit wins the

competition. The winner and its neigh-

bors will have their weights updated. The

change is such that all weights move over

a short distance towards the current input

pattern which they begin to encode. Each

presentation of an input pattern will move

the weights of a set of units in the direc-

tion of that pattern. As training proceeds,

the neighborhood affected will shrink.

Thus, in the beginning a large group of

units will be pulled towards a particular

pattern while towards the end only a few

will be moved. Eventually, after generally

thousands of pattern presentations, the

result of this kind of training is a topo-

logical organization of the units so that

the ones encoding similar patterns will be

geometrically grouped together. In this

manner, the underlying structure of the
clusters will become visible.

THE CLASSIFICATION EXPERI-

MENTS

The set of satellite images used in

the experiments consists of 23 pho-

tographs showing 5 different scenes.

Their distribution over the spectral bands

is as follows. Bands 2 through 4 each con-

tain 5 images (one of each scene), and
bands 1 and 5 each have 4 images (with

the Great Lakes scenemissing). All pho-
tographsare of size512x 512,contain 256
gray levels and have a resolution of 1100
meters per pixel. The imagesin bands 1
and 2 look most natural to the human eye
since the corresponding wavelengthsare
in the visible or nearinfrared range, as
shownby Table 1. The onesin bands3 to
5 appear slightly unfamiliar since these
are infrared photographs.

Several classification experiments
were performed. All of them employed
the same set of segmentsextracted from
the images. All segmentswere selected
usingthe Channel 2 photographsand had
a size of 25 by 25pixels. Thesesegments
were classified depending on the preva-
lent cloud pattern present. Not all cloud
patterns appear the same. As mentioned
before, a major causefor the differences
in these patterns is cloud density. As-
signing all the different densitiesto a sin-
gle classdid not seemreasonable. It was
decided to define three classesof cloud
patterns in the following way. When a
segment is completely filled by clouds it
will be labeled asdense clouds. Different

patterns of dense clouds do occur, but

these will all be assigned to the same

class. When the cloud density is such that

clouds fill the segment for at least two

thirds of the area, this segment will be la-

belled as medium clouds. Finally, a seg-

ment showing light cloud cover such that

less than one third of the area is actually

covered by clouds is labelled as sparse

clouds. All segments were selected to

show as uniform a cloud pattern as possi-

ble. They do not cross texture bound-

aries, showing dense clouds in one part

and possibly no clouds in another part.

Thus, the medium and sparse cloud seg-
ments show clouds interspersed with land,

water, ice, or a combination of these sur-

faces. All segments without any cloud
cover are labelled as no clouds. These

segments are filled with land, water, and
ice, in various combinations.

Once the segments were selected

in Channel 2, corresponding segments
with the same coordinates were extracted

from all other channels of the same scene.

A feature vector was then formed for

each segment in the following way. A set
of four directional co-occurrence matrices

was calculated for each one. The four

prevalent measures, angular second mo-

mentum, contrast, correlation, and en-

tropy were computed from each matrix.

In order to measure a rotationally invari-
ant texture, the feature values derived

from the four directional matrices were

averaged. The four values thus obtained

were combined with the average gray
level (which had to be scaled) and the

standard deviation of the gray levels in

each segment. The resulting six-di-
mensional feature vector was then nor-
malized.

Classification with Cascade-Correlation

Cascor was used in three different

experiments. In the first one, the feature

vectors used for training the network and
those that test the net were all taken from

the same image. Thus, this experiment

consisted of 23 independent tests, one for

each of the 23 images. These tests were

performed to get an initial impression of

the classification capabilities but were not

considered to be of major importance.

The second experiment combined all im-

ages of a particular channel. It consisted

of 5 independent tests, one for each

channel. The third experiment combined
information from different channels. Out

of the many possible combinations five

were selected that appeared most promis-

ing.

128

Experiment 1: Classification within a single
image

All feature vectors generated from

a single image were collected. In most

cases, the image contained all four classes
and provided 32 vectors, 8 for each class.

One vector out of each group of 8 was

randomly chosen as the test case. All

others were used for training. All training

vectors were randomly ordered so that

the network would be exposed to all four

classes simultaneously. Cascor always
converged to a solution in a short time in-
terval. The number of hidden nodes allo-

cated varied from 3 to 11 with an average

of about 6 when all 4 classes were present

in the image. Images containing fewer

classes generated fewer nodes. Each test

consisted of a single trial. Classification
in these tests scored over 90% on the av-

erage.

Experiment 2: Classification within a single
channel

This experiment involved all fea-

ture vectors generated from images be-

longing to the same channel. These vec-

tors were partitioned in a training set and

in a test set. Four tests were performed in
each channel. Each test used a different

set of test items. Test items were ob-

tained by random selection from each

class and each image of a channel. The

remaining vectors were used for training.
A typical training set consisted of about
100 vectors, and about 16 vectors were

used for testing. (The test and training
sets in Channels 1 and 5 were somewhat

smaller because one of the scenes was not

available in these channels.)

Cascor was run five times on each

training set. It always converged to a so-

lution with a varying number of hidden
nodes. Each group of five trials that were

tested on the same data forms a test case.

The test cases were labeled 1 through 4.

It was observed that performance within a

test case could vary considerably. This

may be caused by the relatively small set

of test data. Table 2 lists the average per-

centage of misclassifications of each test

case and the misclassification percentage

of the trial in each case that performed

best. This table also shows the average

number of hidden nodes generated during

training and the overall average

percentage of misclassifications observed
in the channel. It is seen that the

misclassification percentages are rather

high and increase in the infrared chan-
nels.

More precise classification data

can be obtained if the nature of the mis-

classification is taken into account. Three

of the four classes correspond to different
levels of cloud cover and are therefore

quite similar. It may be considered less
serious if a vector is misclassified within

the group of cloud cover classes than

when clouds are not recognized at all.

Thus, it may also be important to make a

distinction between segments showing
some level of cloud cover and those con-

taining no clouds at all. Tables 3 and 4

provide examples of the nature of the
misclassifications obtained from the set of

"best trials" of each test in Channels 2 and

3. These tables show the actual classifica-

tions horizontally and the classifications

assigned by Cascor vertically. The num-
bers indicate fractions. Thus, the num-

bers along the diagonals indicate the frac-

tion of correct classifications by the net-

work, and the numbers off the diagonals
show the fraction of misclassifications in

each category.

Table 3 shows that most mis-classi-

fications in Channel 2 were made be-

tween the different cloud cover cate-

gories. There are relatively few cases

where a segment showing some cloud

cover was taken for a segment that con-

tained no clouds at all, or conversely.

Table 2. The number of hidden nodes and percentage of misclassifications

in each test performed in each of the five channels

Channel Test ID Average Number Average Number of Average Mlsclassificat_ns
of Hidden Nodes Misclassificationsin% in Channel in bestt_al in%

1 1 21 25 17

2 21 28 17

3 22 22 17

4 23 17 23 6

2 I 28 22 12.5

2 25 28 25

3 25 25 19

4 26 22 24 12.5

3 1 28 40 31

2 28 32 19

3 30 31 12.5

4 29 40 36 31

4 1 29 45 31

2 29 46 37

3 29 34 25

4 30 45 42 25

1 23 42 33

2 25 28 17

3 24 52 50

4 24 32 38 25

Table 3. The classification in Channel 2

of the best trials given as fractions

Table 4. The classification in Channel 3

of the best trials given as fractions

actual classification actual classification
classification _ classification =

assigned by assigned by
Cascor dense medium sparse no Cascor dense medium sparse no

clouds clouds clouds clouds clouds clouds clouds clouds
dense dense
clouds 0.67 0.04 clouds 0.50 0.17 0.06

medium
clouds 0.17 1.00 0.13

medium
clouds 0.33 0.75 0.19

sparse sparse
clouds 0.17

clouds 0.08 0.81 0.04

no clouds 0.08 0.06 0.92 no clouds 0.92

0.08 0.75 0.08

130

When judging this result it should be

taken into account that many of the no

clouds segments show ice cover which, at

least to the human eye, appears similar to

a dense cloud cover. However, the neural

network generally had no problem distin-

guishing between these similar textures.
Table 4 shows the results in Channel 3.

These are particularly interesting because

all cloud segments in this channel were

classified as containing some cloud cover.
The classification in terms of clouds or no

clouds was generally found to be above
80% in all channels.

Experiment 3: Classification using fused
channel data

The previous experiment showed
that the classification results differed for

the various channels. Also, the kind of

misclassifications seemed to vary slightly

between the channels. In particular, in
Channel 3 all clouds were classified as

clouds, although misclassifications oc-

curred between the different types. On
the other hand, the detailed classification

as different types of cloud cover in Chan-

nels 1 and 2 surpassed that of Channel 3.
If information obtained from different

channels were to be combined, better

classification results could be expected. It

was decided not to investigate all possible
combinations but to select the more

promising ones.

Channels 1 and 2 show the fewest

misclassifications. Therefore, the data of

these two channels were combined in an

expectation of improved classification.
Channel 3 is of interest because of its

ability to distinguish between segments

containing some cloud cover and those

containing no clouds at all. The data of
this channel were combined with those of

Channel 2. Also, in order to make op-
timal use of the available data, it was de-

cided to combine all five channels. Ini-

tially, these three types of test were per-

formed. After it was observed that the

Channel 2, 3 combination led to signifi-

cantly improved results it was decided to

also investigate the combined data of

Channels 1, 2, 3 and Channels 2, 3, 4.

The channel data were combined

by means of concatenating the appropri-
ate feature vectors. Each feature vector

used in the previous experiments has six

components. As an example of how vec-
tors were combined, consider the two sets

used for the classification tests in Chan-

nels 1 and 2. Each vector in the Channel

1 set is generated from a specific segment

in a Channel 1 image. Each one has a

corresponding vector in the Channel 2 set

generated from the analogous segment of
the same scene in Channel 2. The infor-

mation in the two channels was combined

through concatenating each pair of corre-

sponding vectors. Thus, the training set
used for the Channel 1 and 2 combined

test was of the same size as the training

set used for testing Channel 1. However,
each vector in the combined test had

twelve components. The feature vectors
of Channels 2 and 3 were combined in the

same manner. The feature vectors of the

combined Channels 1, 2 and 3 and Chan-

nels 2, 3 and 4 tests each had eighteen

components. Finally, the corresponding
feature vectors of all five channels were

combined to form a thirty component vec-

tor for the classification experiment com-

bining all channels.

The tests were conducted in the

same manner as in the second ex-

periment. Again, the feature vectors were

partitioned into a training and a test set in

four different ways. For each training set,

Cascor was trained in five separate trials.

All of them converged and were tested.
Table 5 shows the results for the fused

data. The nature of the misclassification

of the "best trials" in each test is shown in

131

Channels

1 and 2

2 and 3

1, 2 and 3

2, 3 and 4

1, 2, 3, 4, and 5

Table 5.

Test

The number of hidden nodes and percentage of misclassifications

in each test case performed in the combined channels

ID Average Number Average Number of Average Misclassifications
of Hidden Nodes Misclassifications in% in Channels in best _ial in%

1 17 23 17

2 18 10 0

3 19 33 17

4 17 32 24 17

1 19 9 0

2 19 7 6

3 18 15 0

4 17 5 9 0

1 12 12 0

2 14 18 17

3 13 10 8

4 12 29 16 25

1 17 15 0

2 17 7 0

3 18 9 0

4 19 4 9 0

1 12 15 0

2 12 8 8

3 12 10 8

4 10 29 15 25

Table 6. The classification in Channels 2 and 3
combined of the best trials

classification actual classification

assigned by _"
Cascor dense medium sparse

clouds clouds clouds
dense
clouds 0.92

no

clouds

medium
clouds 0.08 1.00

sparse
clouds 1.00

no clouds 1.00

Table 7. The classification of all five channels
combined of the best trials

classification actual classification

assigned by dense medium sparse
Cascor

clouds clouds clouds
dense
clouds 0.88 0.08

medium
clouds 0.12 0.75

sparse
clouds 0.25 0.92

no clouds

D

no

clouds

0.05

0.95

132

Tables 6 and 7 for Channels 2 and 3 and

all five channels combined, respectively.

Comparing the classification re-

sults of the fused Channel 1 and 2 data

with the classification in Channels 1 and 2

separately, it is seen that the combined

result gives the same overall classification

performance. However, the fused data of

Channel 2 and 3 showed significant im-

provement. Correct classification

reached over 90% and matched the per-

formance of the single image tests. In

particular, the precise misclassification

results displayed in Table 6 show that the
"best trials" in each test had almost no

misclassifications at all. When all five

channels were combined, the classifica-

tion performance dropped somewhat but
is still better than classification in each of

the channels separately. In particular,

Table 7 shows that the separation be-

tween segments containing some level of

cloud cover and those containing no

clouds at all is quite good for these tests.

The experiments in the three channel

combinations showed similar results. It is

remarkable, though, that in the Channel

2, 3 and 4 combination, there always was

at least one trial that showed perfect
classification.

Kohonen's self-organizing maps

The various sets of feature vectors

were also used to produce the topological

selforganizing maps. A topological map

was generated for each channel sepa-

rately as well as for the channel combina-
tions discussed before.

When producing a map showing

the organization of the feature vectors

within a channel, the input layer must

consist of six units since the single chan-

nel feature vectors have six components.
In order to show the results of the com-

bined channels, this input layer needs to

be enlarged according to the increased

size of the feature vectors. The competi-

tive layer had 100 units organized as a 10

by 10 grid. The total number of feature

vector presentations was 100,000. Con-

vergence to a stable configuration was

achieved. The size of the initial neigh-

borhood was 5 by 5 and the initial learn-

ing rate was 0.2.

Figure 4 shows the topological
map obtained from the Channel 1 data as

an example. It is seen that the no clouds

vectors are spread out most and show up

in almost any segment of the plane. This

is to be expected because these vectors

represent many different textures.

However, the different cloud types do not

cluster very well either. Some clusters

can be distinguished; for example, there is

a dense clouds cluster consisting of five

units in the top left quadrant of the plane.
But some smaller clusters and isolated

units representing the dense clouds texture
are found in other locations. The medium

clouds and sparse clouds patterns are dis-
tributed too. Similar distributions were

observed in the other channels. It may be
concluded that none of the five channels

show strong clustering of feature vectors

belonging to any of the four classes dis-

tinguished in the experiments. Thus,

many of the feature vectors belonging to

the same class are quite dissimilar. The

clustering patterns of the larger vectors

combining the results of more than a sin-

gle channel were not significantly differ-
ent.

CONCLUSIONS

The project researched the possi-

bility of automated discrimination of a

specified texture in AVHRR satellite im-

ages. The texture of cloud formations was
selected and three different classes were

defined based on the cloud density. Only

a small set of satellite images was avail-

133

©=,==@=o==0.oo= no clouds

@OO©@@@
@000000
0@00®@@
@@@0@0@
@@@0@@©
@@@0@©0
00@@0©@
@00@0©0
00000®0
@O@@OO@

00@
@@0
OO@
@@@
00@
@OO
0@@
@00
0©©
OOO

Figure 4. The clustering of the dense, medium, and

no clouds feature vectors in Channel 1

able. Taking the difficulty of the classifi-

cation into account, it may be concluded

that this project was successful in the

sense that it was found possible to dis-
criminate cloud textures from all other

textures with reasonable accuracy. Seg-

ments showing the various levels of cloud

cover were extracted. In many segments,
the cloud textures were mixed with vari-

ous levels of noise due to small gaps in
the cloud cover. The method of second-

order gray level statistics was used to ob-

tain feature vectors from these segments.

The clustering properties of these vectors

was studied by means of the Kohonen

self-organizing maps.

134

The vectors generated by the no

clouds class did not cluster very well as

should be expected. These vectors repre-

sent many different textures and will show

large variability. It should also be antici-

pated that the sparse clouds vectors would
not cluster well. This turned out to be

generally the case (although the largest

cluster observed in any of the maps be-

longed to the sparse clouds class). The
medium clouds and dense clouds feature

vectors were expected to cluster better as

compared to the other two classes, but
this was found not to be the case. In or-

der to obtain better clustering properties

of feature vectors, different preprocessing
methods could be studied. Possible can-

didates are the two-dimensional Fast
Fourier transform, the Gabor transform
and wavelets expansions. However, it
should be realized that cloud textures
show large variability and the classifi-
cation problem may be inherently dif-
ficult, independent of which prepro-
cessingtechniqueis used.

Given this large variability in fea-
ture vectors within a class, it does not
seem advisable to use a self-organizing
neural network architecture for classifica-
tion. The topological mapsgeneratedby
the Kohonen network were of interest be-
causethey revealed the complexity of the
classification problem. However, if this
architecture had beenused asa classifier,
it would have generatedmany misclassifi-
cations. A neural network architecture
employing supervised learning is better
suited for this type of classification as
demonstratedby this project. The Cas-
cade-Correlation network performed
well. The best results were obtained
when data from Channels 2 and 3 or
Channels2, 3 and 4 were fused. In these
cases, the four classescould be distin-
guishedwith an averageaccuracyof 91%.
Moreover, several tests in these channel
combinations showedno misclassification
at all. If thesebetter performing trained
networks could be recognizedin advance,
muchbetter classificationresults could be
obtained.

We recently became aware of a
similar studyperformed by Slawinski et

al., 1991. These researchers used the

backpropagation architecture to classify

different levels of cloud cover against an

ocean background in AVHRR images.

They used the pixel gray levels of small

image segments together with first-order

statistics measures as inputs to the neural

networks. Their best results (93% correct

classification) are similar to the best clas-

sifications obtained in our project. How-

ever, the ocean provides a rather homo-

geneous background and the variability in

their images is essentially introduced by

the cloud textures. When the background

itself shows large variability, as in the

majority of the images used for our pro-

ject, classification methods that are

largely based on the actual values of the

pixels may not be successful.

This feasibility study has proved

the possibility of automated satellite im-

age classification. Future research could

focus on the distinction of many different

textures in these images. Eventually, a

software package could be implemented

that partitions an image into a set of

overlapping segments and then scans each

segment in an attempt to classify it ac-

cording to its dominant texture. A set of
identified textures could be used as an in-

dex in a data base through which images
could be stored and retrieved. Research

will be required to specify an appropriate
set of textures. Various preprocesing

techniques need to be investigated with

respect to the clustering properties of the

generated feature vectors. Additional re-

search may be required to select the most

appropriate neural network architecture.

Based on the current results, Cascade-

Correlation seems a good candidate for

the expanded classification task. How-

ever, there is some evidence that the gen-
eralization characteristics of Cascade-

Correlation are not as good as those of

the backpropagation network (Crowder,

1990). Thus, it may be useful to consider
additional architectures.

Acknowledgements: The satellite images

were made available by CTA, In-

corporated. The code for the Cascade-
Correlation neural network was made

available by R. Scott Crowder, III of

Carnegie Mellon University. The code

for the Kohonen self-organizing maps was

written by Juan C. Soto, Jr. of the Univer-

135

sity of Colorado at Colorado Springs.
The training of the Kohonen network was

performed by Tammy L. Skufca, also of

the University of Colorado at Colorado

Springs.

REFERENCES

Crowder, R. S. (1990). Predicting the
Mackey-Glass Timeseries with Cascade-

Correlation Learning. In D. S. Touret-

zky (Ed.), Proceedings of the 1990 Con-

nectionist Models Summer School (pp.

117-123). San Mateo: Morgan Kauf-
mann.

Fahlman, S. E., and Lebiere, C. (1990).

The Cascade-Correlation Learning Ar-

chitecture. In D. Touretzky (Ed.), Ad-

vances in Neural Information Processing

Sytems 2 (pp. 524-532). San Mateo:
Morgan Kaufmann.

Fahlman, S. E. (1988). Faster-Learning

Variations on Back-Propagation: An

Empirical Study. In D. Touretzky (Ed.),
Proceedings of the 1988 Connectionist
Models Summer School. San Mateo:

Morgan Kaufmann.

Goodman, A. H., and Henderson-Sellers,

A. (1988). Cloud detection and analysis:

A review of recent progress. Atmos.
Res., 21,203-228.

Haralick, R. M., Shanmugam, K., and

Dinstein, I. (1973). Textural Features
for Image Classification. IEEE Transac-

tions on Systems, Man, and Cybernetics,
3, 610-621.

Kohonen, T. (1988). The Neural Pho-

netic Typewriter. Computer, 21, 11-22.

Lee, J., Weger, R. C., Sengupta, S. K., and

Welch, R. M. (1990). A Neural Network

Approach to Cloud Classification. IEEE
Transactions on Geoscience and Remote

Sensing, 5, 846-855.

Rossow, W. B. (1989). Measuring cloud

properties from space: A review. J. Cli-
mate, 2, 201-213.

Rumelhart, D. E., Hinton, G. E., and

Williams, R. J. (1986). Learning In-

ternal Representations by Error Propa-
gation In D. E. Rumelhart and J. L.

McClelland (Eds), Parallel Distributed

Processing: Explorations in the Mi-

crostructure of Cognition, Vol. 1" Founda-

tions (pp. 318-364). Cambridge, Mass.:
MIT Press.

Slawinski, O., Kowalski, J., and Cornillon,

P. (1991). A Neural Network Approach

to Cloud Detection in AVHRR Images,

Proceedings of the International Joint

Conference on Neural Networks, Vol. L
283-288.

Weszka, J. S., Dyer, C. R., and Rosenfeld,

A. (1979). A Comparative Study of Tex-
ture Measures for Terraine Classifica-

tion. IEEE Transactions on Systems,

Man, and Cybernetics, 6, 269.

136

,/

Design of Neural Networks for Classification of Remotely

Imagery

Samir R. Chettri _ 1_"

Hughes-STX at NASA/Goddard Space Flight Center

Greenbelt, MD 20771

N92-23367

Sensed

J

/

Robert F. Cromp
Code 934

NASA/Goddard Space Flight Center

Greenbelt, MD 20771

Mark Birmingham l
Princeton University, New Jersey [-

,'2

i

Abstract

As currently planned, future Earth remote sensing platforms (i.e., Earth Observing System
[EOS]) will be capable of generating data at a rate of over fifty Megabits per second. To address
this issue the Intelligent Data Management (IDM) project at NASA/GSFC has prototyped an
Intelligent Information Fusion System (IIFS) that uses bsckpropagation neural networks for the
classification of remotely sensed imagery. This is part of the IDM strategy of providing archived
data to a researcher through a variety of discipline--specific indices.

In this paper we discuss classification accuracies of a backpropagation neural network and
compare it with a maximum likelihood classifier (MLC) with multivariate normal class models.
We have found that, because of its nonparametric nature, the neural network outperforms the
MLC in this area. In addition, we discuss techniques for constructing optimal neural nets on
parallel hardware like the MasPar MP-1 currently at NASA/GSFC. Other important discussions
are centered around training and classification times of the two methods, and sensitivity to the
training data. Finally we discuss future work in the area of classification and neural nets.

1 Introduction

With the expected explosive growth of data generated by Earth orbiting platforms such as the Earth

Observing System (EOS), it is imperative that the data be rapidly archived and made available to

the researcher through a variety of discipline-specific indices. To address this issue, the Intelligent

Data Management (IDM) project at NASA/GSFC has prototyped an Intelligent Information Fusion

System (IIFS) that classifies satellite data from a number of spectral bands into a number of land

use/land cover categories [Anderson 76] and provides rapid access to the classified data as well as

the raw data. The choice of land use/land cover categories is part of a larger plan to classify images
based on a scientist's specific research interests.

137

Managementof the EOSdata can be considered as two overlapping problems: characteriza-

tion of the data content and subsequent archiving of images; and efficient querying of the resulting

voluminous database. The first problem can be solved independently of the choice of database

technology, and is elaborated upon in this paper.

In this paper we discuss the use of neural nets for the classification of remotely sensed

imagery. In particular we compare backpropagation neural nets (BPNN) with a Gaussian maximum

likelihood classifier (GMLC). Some of the items we compare include training time, classification
time, accuracy of classification, and sensitivity of classification accuracy to the training set. This

study will thus help researchers decide on what classification method to apply, given the constraints

of their problem.

The body of the paper is divided into three sections. First, we briefly discuss the algorithms

for the neural net and the MLC methods. Next, we compare and contrast the two methods.

Finally, we discuss selection criteria for each of the two methods and conclude with our future
research directions.

2 Neural net and maximum likelihood classification algorithms

In this section we discuss the basic algorithms for training and classification for the neural net (NN)

and Gaussian maximum likelihood classifiers (GMLC). For more details on both topics, refer to

[Andrews 72] and [Hertz 91].

2.1 Maximum likelihood classification

The job of designing the pattern classifier consists of first dividing the feature space into decision

regions and then constructing a classifier so that it will identify any measurement vector X as

belonging to the class corresponding to the decision region in which it falls.

The ma_dmum likelihood decision rule allows us to construct discriminant functions for the

purposes of pattern classification [Andrews 72]. Given K classes, let f(X] Sk) be the probability

density function (pdf) associated with the measurement vector X, given that X is from class k.

Let P(Sk) be the a priori probability of class k. We can use the maximum likelihood decision

rule to identify the class to which X belongs. It can be stated as follows:

Decide X E Sk iff f(X I S_)P(Sk) >_ f(X I Sj)P(Sj),j = 1,2, ... K .

The products f(X[Sj,)P(Sk), where k = 1, 2, ...K correspond to discriminant functions gl(X),

g2(X),-'-gK(X). Thus these functions are evaluated at X = X; where X_ is the unknown vector;

next, the maximum of these functions gk(Xi) is determined and the unknown vector is assigned to
the class k.

The discriminant function for the multivariate normal density can be written as

g (x) = lu[P(sk)]- lnlr k[- (X- Uk)r r.;1 (X - Uk). (1)

138

In theaboveequation, both _k (the variance-covariance matrix) and Uk (mean vector) are provided

by the user. In practice, training samphs are used to obtain estimates of _k and Uk. Also from

equation (1) we see that once the training statistics are generated, only the quadratic kernel varies

with each input vector X. Such a classifier is called a Gaussian Maximum Likelihood Classifier

(GMLC) and is used in our classification experiments. It is a parametric supervised technique for

estimation of a posterior{ probabilities.

2.2 Backpropagation

The backpropagation algorithm is the backbone of much of the current resurgence of research into

neural nets [Hertz 91]. With respect to pattern recognition, backpropagation can be considered to

be a nonparametric technique for estimation of a posteriori probabilities [Wan 90].

The backpropagation network consists of a series of layers: an input layer, an output layer

and one or more hidden layers. Each layer has a number of nodes or processing elements (PE). Each

node in a layer is connected to every node in the next layer and the propagation of information is

unidirectional. Also, in our simulations, connections are only permitted between nodes belonging

to adjacent layers. Each connection has a value associated with it called its weight, and each PE
has a value associated with it called a threshold value.

To find the output of any node we first sum the products of the output of all the nodes before

it with the weights associated with each connection. Next we subtract the threshold value of the

node from this sum, and finally we pass this value through an activation function that determines

the output of the current node. The activation function used in this study is the sigmoid function
defined as

1

f(h) - 1 4- exp -kh (2)

where h = _ wi_i - O, wi are the weights, _i are the inputs to the current node (or output of nodes

in the previous layer), and 0 is the threshold value in the the current PE.

The training phase of backpropagation gives a method of changing the weights in a network

such that it learns a series of input/output pairs (_,<_') where _' is the k th input for the /z th

pattern, and _' is the correct output for the i th output unit for the #th pattern. The basis for the

weight change is gradient descent, thus the weights w_k are changed by an amount Aw_k that is

proportional to the derivative error function E with respect to the weights, where w_k is the weight

that lies on a connection between the jth PE of one layer with the k th PE of the previous layer,

and r indicates the number of the current layer. The most commonly used error function is the

quadratic error function [Hertz 91] defined as

1
E= _--_[(_'-0_12. (3)

tti

Here, the summation is over all training samples, and O_' is the network output for a given input

pattern for which the expected output is _'.

Training proceeds by randomly selecting the weights in the net, passing the input pattern
r 3E

through the network, getting the resulting output, obtaining Awjk = -r/_, and finally updating

130

Table1: Distributionof data,BlackhiUsandDC datasets

Class # of PixelsBlackhills
Training

0 453
1 478
2 464
3 482
4 0
5 0
6 368
7 0
8 0

Entire image
6676

42432
16727

194868

0

0

1441

0

0

of Pixels DC

Training

73

74

75

75

0

0

74

0

0

Entire image
2668

776

3733

13826

0

0

936

0

0

Class name

Urban

Agricultural

Rangeland
Forested Land

Water bodies

Wetland

Barren

Tundra

Perennial snow and ice

the weights by using w_k,new = w'jk,old + AW_k. Training is done either for a maximum number of

iterations or until the error E goes below a pre-defined threshold level. At this point the trained

network can be used on data in feed-forward mode for the purposes of classification.

3 Experimental Method

In this section we describe the data that we used to compare our neural net (NN) classifier and

Gaussian Maximum Likelihood classifier (GMLC). In addition we discuss the selection process

that we employed for the training and testing data. Finally, we describe the training and testing
methodology used.

3.1 Description of data set

Two data sets were used for the purpose of comparing the the GMLC and the NN approach.

The first is the Blackhills data set, taken from the Landsat 2 multispectral scanner (MSS) (see

Figure 1). The spectral bands are 0.5 - 0.6/_m (green), 0.6 - 0.7#m (red), 0.7 - 0.8/_m (near-

infrared) and 0.8 - 1.1pro (near-infrared). These bands correspond to channels 4 through 7 of

the Landsat sensors. There are 262,144 pixels corresponding to a 512 × 512 image size, and each

pixel represents 79m × 79m on the ground. The image region covers a range of latitudes from

44°15 ' to 44o30 ' and longitudes from 103o30 ' to 103°45'; the images were obtained in September

1973. The ground truth was also provided in the form of United States Geological Survey level

II land use/land cover data [Anderson 76]. Since we were only interested in level I classification,

the different classes were conglomerated into the various higher level classes in the hierarchy; the
distribution of pixels is shown in column three of Table 1.

The second data set has been used previously in [Campbell 89], which, to our knowledge, was

the first open-literature publication of the use of the backpropagation network to do classification

of remotely sensed imagery. In contrast to that publication, we will only be using the USGS level

I land use/land cover scheme for classification. The first four spectral bands from a LANDSAT-4

140

Groups
.-.....,....,

ii' iii',i',iii',i 0 Urban

1 Agric.

U2 Range
3 Forest

6 Barren

Figure 1: Ground truth for the Blackhills image

thematic mapper (TM) image were used, and the corresponding spectral bands were 0.45 - 0.52#m,

0.52 - 0.60#m, 0.60 - 0.69#m and 0.76 - 0.90#m respectively. There are a total of 22,801 pixels

in a 151 × 151 grid, and each pixel is representative of a 30m × 30m area on the ground. Only

21,939 pixels of valid ground truth were available, and these are tabulated in column five of Table 1.

Figure 2 shows a gray-level thematic map, with the various classes labeled. The area covered is

about 25 miles SSE of Washington, DC, and is called the DC data set.

3.2 Selection of training and test data

The most important point to note is that identical data were presented to the NN and GML

classifiers for training and testing. The ground truth was viewed on a display device to get an

idea of the spatial distribution of the ground truth pixels. According to [Pdchards 86], a minimum

sample size of 60 pixels is necessary for accurate classification. Also, according to [Campbell 87], a

large number of smaller training sites should be used rather than a few large ones. Following these

recommendations, we formed training sets from both the TM (DC data set) and MSS (Blackhills

data set) scenes. The results are summarized in columns two and four of Table 1.

3.3 Training and testing

The training set and the test set are disjoint. The classifiers were derived from the training group

and the error estimate obtained from the test group. This method is known as the "holdout" or H

method of estimating errors. The training data itself consists of a series of sites from each class in

the image. For the GMLC we can compute the mean vectors and covariance matrices for each site

separately and combine them to form the class mean vectors and covariance matrices. For the NN

141

Groups
.,

 iiiiiiiiiililil0 Urban

1 Agric.

R2 Range
3 Forest

i 6 Barren

i- Unknown

Figure 2: Ground truth for the DC image

approach, the site information is not important. However, the channel information, which is an

integer in the range [0 255], is scaled to [0.1 0.9] for training. The training of the NN is achieved

by repeatedly presenting the data to the net and performing the backpropagation algorithm as

described in section 2.2. Training in the NN is completed when either the error as described in

equation (3) goes below a threshold level, or a maximum number of iterations of the BP algorithm

is reached. It is important to avoid overtraining the net as it would classify the training data

perfectly but would not perform as well on the testing data.

An alternative method for training and testing data is recommended in [Weiss 89] and is

called leaving-one-out. The principle is very simple and involves taking n - 1 points from the

sample and training the classifier on that information. The n th point is then classified and this

training and testing procedure is repeated for all n points in the set. Quite clearly, for our data it

is entirely infeasible to use the leaving-one-out process since we will have to design n = 262,144

and n = 22,801 classifiers for the Blackhills and DC data sets respectively. However, with large

sample sizes (which is the case for our data) the accuracy in estimating error is adequate by the H

method [Kanal 68], hence our selection of that procedure.

The training of the NN proceeds on the basis that it is a function optimization procedure.

Remembering that the function optimization process is sensitive to initial conditions, we:

1. randomize the initial selection of weights and thresholds;

2. randomize the order of the training data.

142

The effect of this is to produce different neural nets for each set of initial conditions. Thus, when

we compare the NN and GMLC accuracies, we will be referring to the average correctly classified

by the NN, while there will be only one value for the GMLC. Training of these multiple neural nets

can be achieved on the MasPar MP-1, with each processing element generating an independent

NN. The best net is one that obtains the lowest error on the test set, and it is selected for general

use.

4 Comparing backpropagation (BP) with Gaussian maximum

likelihood classification (GMLC)

In this section we compare BP with GMLC under different sets of categories. These categories

include time for training, time for classification, memory requirements, and classification accuracy.

Instead of exact calculations, we give order-of-magnitude estimates for these quantities. It is

important to note that we assume that our neural net is restricted to one hidden layer, because

according to Kolmogorov's theorem [Hecht-Nielsen 90], a three layer neural net can be constructed

that performs any continuous mapping with (2N ÷ 1) PE's in the hidden layer, where N is the

number of elements in the input layer. Another assumption is that the output layer has rn nodes

where m is proportional to N. Note that N is also the dimension of the unknown vector whose

class we are trying to determine. This notation will be used in the subsequent subsections.

4.1 Training time

Training time in the neural net can be shown to be O(N 6) based on arguments in [Muhlenbein 90].

The training phase of GMLC has a worst case complexity of O(N3).

While it seems quite clear the training time for the GMLC is significantly less, the current,

off-the-shelf availability of hardware to do backpropagation training reduces the advantage of

the GMLC. Since BP is a far more general process, hardware will continue to be supported and

developed for it, whereas since the GMLC is a specific method of classification, it is uneconomical to

develop custom hardware for this process. In addition, we have only discussed a simple BP scheme.

In fact there exist a number of speed-up procedures [Hertz 91], that would make BP competitive

with GMLC in software implementations.

Also, while the GMLC is suited for similar types of data (in our case spectral information),

it is unsuited for multi-source data, since the underlying distribution may change when one adds

(say) elevation data [Benediktsson 90]. The NN handles these problems in an effective manner. In

addition, our application permits the training to be performed off-line, thus eliminating the time

factor entirely.

4.2 Classification time

Both the NN and GMLC method can be shown to take constant time for the classification of one

pixel. Again, the availability of hardware makes the NN method more attractive. In addition, even

in software, the time needed for neural network computations can be considerably decreased by

using integer calculations for the sigmoid function [Birmingham 91]. In this paper, a Taylor series

143

Groups

0 Umban

1 Agric.

S2 range
3 Forest

6 Barren

B- Unknown

Figure 3: Maximum likelihood classified DC image

approximation to the sigmoid with only integer fractions is used. It was found that an almost

six-fold speed-up factor can be obtained. Another advantage of the NN is that the same hardware

can be used for training and feedforward classification, which is not the case for the GMLC.

4.3 Accuracy

The accuracy of each method can be summarized by the contingency table, which is an R x R

matrix of numbers, where R is the number of classes. Each entry Cij in the matrix represents the

number of times a pixel in class i was put into class j. Cii is the number of correct classifications
in class i.

For the DC data set we have two sets of contingency tables. In Table 2, we present the GMLC

accuracy results for the training and test data respectively. In Table 3, typical accuracy results for

the NN are presented. In addition, Table 4 presents the average percent correctly classified (PCC),
the maximum PCC, and the minimum PCC for all the nets that were trained. We see that even

the minimum PCC for the NN exceeds the PCC value obtained by GMLC. The number of nets

trained to get these readings was six. For the purposes of visual comparison, the classified images

are shown in Figures 3 and 4.

We have two sets of contingency tables for the Blackhills data set. In Table 5, we present

the GMLC accuracy results for the training and test data, respectively. In Table 6, typical accuracy

results for the NN are presented. In addition, Table 7 presents the average PCC, the maximum
PCC, the minimum PCC as well as the standard deviation of the PCC for all the nets that were

144

Groups

...............0 Urban>:.:,:.:.:.:.:.
:-x.:-:-:.:-:

1 Agric.

2 Range

3 Forest

6 Barren

i- Unknown

Figure 4: Neural net classified DC image

Table 2: Contingency table for GMLC, DC training data on left (PCC : 0.827), DC test data on

right (PCC : 0.623)

0 1 2 3 6 0 1 2 3 6

0 1843

0 30

6O5

1661

46

68 0 5 0

2 56 12 4

6 5 64 0 0

0 0 1 72 2

0 27 0 0 47

219 505 16 12

380 158 14 120

1132 1472 220 229

715 1634 9408 333

380 I00 3 333

Table 3: Contingency table for NN, DC training data on left (PCC = 0.871), DC test data on right

(PCC : 0.677)

0 1 2 3 6 0 1 2 3 6

0 1714

11 15

440

1144

33

68 0 5 0

1 47 15 0

2 1 72 0 0

0 0 0 75 0

0 13 0 0 61

94 751 26 10

195 243 21 228

404 2054 322 438

133 1952 10227 295

251 170 4 404

145

Table 4: Statistics for NN performance on DC test data set

#I Av. [Max. Min. Std. dev.

6 I 0"6751 0.688 0.665 0.093

Groups

0 Urban
1 Agric.

12 Range
3 Forest

I 6 Barren

Figure 5: Maximum likelihood classified Blackhills image

trained. We see that even the minimum PCC for the NN exceeds the PCC value obtained by

GMLC. To compare the classified images visually, refer to Figures 5 and 6.

It is important to note that the contingency table can be used as an aid to further improving

classification accuracy. This is called the conditional probabilities matrix (CPM) technique and

is described in detail in [Cromp 91]. Using this technique, a distance measure representing the

error was reduced by approximately 50%. Of course, the method applies to the contingency tables
produced by both the NN and GMLC.

4.4 Memory requirements

Both the NN and the GMLC can be shown to require O(N _) memory elements.

Groups

i{iii_iiii_0 Urban

1 Agric.

U2 nge
3 Forest

6 Barren

Figure 6: Neural net classified Blackhills image

Table 5: Contingency table for GMLC, Blackhills training data on left (PCC = 0.571); Blackhills

test data on right (PCC = 0.653)

0 236 72 91 18

1 26 316 135 0

2 16 119 279 43

3 1 4 77 385

6 61 28 78 136

0 1 2 3 6 0 1 2 3 6

36 2425

1 6631

7 1840

15 4077

65 157

731 1307 876 884

16140 15741 1463 1979

3450 9333 1165 475

8761 25804 141644 14100

116 147 442 211

147

]'able 6: Contingency table for NN, Blackhills training data on left (PCC = 0.578); BlackhiHs test

data on right (PCC = 0.727)

0 274 74 86 16

1 26 323 124 5

2 21 115 284 44

3 5 4 91 381

6 87 31 75 139

0 1 2 3 6 0 1 2 3 6

3 3021

0 7689

0 2134

1 2183

36 228

709 1413 892 188

16700 15285 1998 282

3610 9360 1128 31

11572 20749 159832 50

125 155 473 92

Table 7: Statistics for NN performance on Hills test data set

Av. Max. Min. Std. dev.

6 0.736 0.754 0.706 0.019

5 Concluding remarks and future work

In this research we have compared the backpropagation neural network (BPNN) with Gaussian

maximum likelihood classification (GMLC). The accuracy level of BPNN (i.e., the number of cor-

rectly classified pixels in a test set) is better than the accuracy obtainable by GMLC. This is

because the BPNN makes no a priori assumptions about the underlying densities of the data. The

memory requirements and classification time were shown to be equivalent for both methods. Fi-

nally, the time for training was discussed. In this case, the GMLC takes less time than the BPNN;

however, this is not considered to be a disadvantage because: the training can be performed off-line

in our application; special purpose BPNN hardware exists for training and testing; and a variety

of speed up techniques are available for BP in software. From these results we feel that the BPNN

is a better candidate for doing supervised characterization of remotely sensed data.

Recently, a new type of neural network called the probabilistic neural network (PNN) has

been developed [Specht 90]. It uses the technique of Parzen windows for nonparametric density

estimation and uses the technique of maximum likelihood estimation for classification. It offers

the twin advantages of being available in hardware [Washburne 91] as well as being considerably

quicker to train than BP. We will investigate the application of such classifiers to our problem.

In addition we will research the use of ancillary data such as texture and spatial information to

improve our classification accuracy.

We have mentioned the MasPar MP-1 as a parallel computer alternative in previous sections.

It will be the focus of IDM to implement parallel code for the BPNN as well as the GMLC, thus

providing fast alternatives to the remote sensing researcher.

148

6 Acknowledgements

A number of people within and without the IDM group have contributed to this work. The authors

would like to thank William Campbell, Erik Dorfman, George Fekete, Co Horgan and Nicholas

Short, Jr. for their input into the content of this paper.

References

[Anderson 76] J. R. Anderson, E. E. Hardy, J. T. Roach, and R. E. Witmer. A land use and

land cover classification system for use with remote sensor data. Geological Survey

Professional Paper 964, United States Government Printing Office, Washington, D.C.,
1976.

[Andrews 72] H. C. Andrews. Introduction to mathematical techniques in pattern recognition.
Wiley-Interscience, New York, 1972.

[Birmingham 91] M. Birmingham. Acceleration of neural networking through the use of integer

approximations for floating point operations. IDM memo 13, NASA, Intelligent Data
Management, Code 934, Greenbelt, Maryland 20771, 1991.

[Benediktsson 90] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy. Neural network approaches

versus statistical methods in classification of multisource remote sensing data. IEEE

Trans. on Geoscience and Remote Sensing, 28(4):540-551, 1990.

[Campbell 87] J. B. Campbell. Introduction to remote sensing. Guilford Press, New York, 1987.

[Campbell 89] W. J. Campbell, R. F. Cromp, and S. E. Hill. Automatic labeling and character-

ization of objects using artificial neural networks. Telematics and Inforrnaties, 6(3-
4):259-271, 1989.

[Cromp 91]

[Hertz 91]

R. F. Cromp. Automated extraction of metaxtata from remotely sensed satellite im-

agery. In Technical Papers, 1991 ACSM-ASPRS Annual Convention, Volume 3, pages
91-101. ASCM/ASPRS, 1991.

J. Hertz, A. Krogh, and Palmer R. Introduction to the theory of neural computation.

Addison-Wesley, Redwood City, California, 1991.

[Hecht-Nielsen 90] R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, Reading, Massachusetts,
1990.

[Kanal 68] L. Kanal and B. Chandrasekaran. On dimensionality and sample size in statistical

pattern recognition. In Proc. Nat. Electron. Conf., pages 2-7, 1968.

[Muhlenbein 90] H. Muhlenbein. Limitations of multi-layer perceptron networks - steps towards

genetic neural networks. Parallel Computing, 14:249-260, 1990.

[Richards 86] J. A. Richards. Remote sensing digital image analysis, an introduction. Springer-
Verlag, Berlin, 1986.

149

[Specht 90]

[Wan 90]

[Weiss 89]

D. Specht. Probabifistic neural networks. Neural Networks, 3:109-118, 1990.

E. A. Wan. Neural network classification: A bayesian interpretation. IEEE Trans. on

Neural Networks, 1(4):303-305, 1990.

S. M. Weiss and I. Kapouleas. An empirical comparison of pattern recognition, neural

nets, and machine learning classification methods. In Eleventh Int. Joint Conference on

Artificial Intelligence, pages 781-787. American Association of Artificial Intelligence,
1989.

[Washburne 91] T.P. Washburne, M. M. Okamura, D. F. Specht, and W. A. Fisher. The Lockheed

probabilistic neural network processor. In International joint conference on neural

networks, volume I, pages 513-518. Institute of Electrical and Electronics Engineers,
1991.

150

N97-23368
by Fusing Multispectral Signatures with Topological Data I

Craig Harston and Chris Schumacher

Computer Application Systems, Inc.

P.O. Box 251

Signal Mountain, TN. 37377

(615) 886-1419

(Fax) 886-7377

C ?

ABSTRACT

Automated schemes are needed to

classify multi-spectral remotely

sensed data. Human intelligence is

often required to correctly interpret

images from satellites and aircraft.

Humans succeed because they use

various types of cues about a scene

to accurately define the contents of

the image. Consequently, it follows

that computer techniques that

integrate and use different types of

information would perform better than

single source approaches.

This research illustrated that

mult ispectral signatures and

topographical information could be

used in concert. Significantly, this

dual source tactic classified a

remotely sensed image better than the

multispectral classification alone.

These classifications were

accomplished by fusing spectral

signatures with topographical

information using neural network

technology.

A neural network was trained to

classify Landsat multi-spectral

images of the Black Hills. Bands 4,

5, 6 and 7 were used to generate four

classifications based on the spectral

signatures. A file of georeferenced

ground truth classifications were

used as the training criterion. The

network was trained to classify

urban, agriculture, range and forest

with 65.7% correct. Another neural

network was programmed and trained to

fuse these multispectral signature

results with a file of georeferenced

altitude data. This topological file

contained i0 levels of elevations.

When this non-spectral elevation

information was fused with the

spectral signatures the

classifications were improved to

73.7% and 75.7%.

INTRODUCTION

Automated schemes are needed to

classify multi-spectral remotely

sensed data. For example, the

upcoming Earth Observing System (EOS)

will generate massive quantities of

data that must be managed quickly

(Dorfman, 1991; Short, 1991). Access

to the resulting data and information

should be quick and user friendly.

Campbell and Cromp (1990) call for a

user friendly system that is based on

user domain-specific knowledge and

goals. This concept requires that the

data system be based on object-

oriented storage and retrieval

procedures that incorporate

information about the image (Dorfman,

1991). Fekete has recommended a

sphere quadtree technique for

subdividing and relating spherical

1This work was supported by the', National Aeronautics and

Administration (NASA) Contract #NAS13-435 wlth the Stennis Space Center.

L

I§I

,/

Space

data into a data base. This technique

relies on the identification of image

contents such as coast lines.

If these recommended data base-

information systems are to be based

on content and knowledge about the

data, then real time classification

algorithms will be required. Data

storage techniques, such as the

sphere quadtree (Fekekte) or object

oriented information, are based on

the contents of the image/data. Data

storage will depend on access codes,

indexes, or keys specific to the

content of data. These codes and

indexes would be determined as the

data arrives and prior to storage

into £he data base. An accurate and

automated classification technique

would be the basis for determining

these indexes that will be used for

cataloging and filing data. Due to

the large quantity of data coming

from the EOS, this classification-

indexing and storage process should

occur in real time or near real time

to avoid building a backlog. Not only

will it be necessary to transmit and

store EOS data efficiently, but also

EOS data should be categorized

somehow during the transmit or

storage process.

While EOS data management will

be important, rapid or near real time

multispectral remotely sensed data

classification is important in its

own right. There are potential

satellite image applications that

depend on rapid access to

classification results. Images should

be classified without the delay

associated with most processing

techniques. The results would be

transmitted to the user in a timely

fashion. This rapid classification

and delivery would support the

feasibility of many new applications.

For example, fishermen could respond

quickly to recent current shifts.

Short term illegal wild cat mining or

deforestation could be identified and

arrested. Natural disasters such as

oil spills could be monitored as they

progress.

Real time classification

techniques do not exist; however,

neural network technology promises to

allow us to automatically classify

images in real time. The technique is

simple yet can be deployed with

parallel neural processing integrated

circuits. These processors are

relatively cheap and available for

multispectral analysis (Harston,

Zhant & Stewart, 1991; Kagel, 1991).

The neural network approach has

classified various remotely sensed

multispectral images (Campbell, Hill

& Cromp, 1989; Benediktsson, Swain &

Ersoy, 1990; Cromp, 1991; Harston &

Schumacher, 1991; Kulkarni, 1990;

Eberlein & Yates, 1991; Decatur,

1989). Decatur's work was with the

synthetic aperture radar (SAR) HH,

HV, and VV components of the return

at the L band (1.225 GHz) and the

others were with visual and infrared

bands. Some of their results can be

seen in Table III. While the results

compare well with statistical

classification techniques, better

performance is desirable. It was

hypothesized that fusion of spectral

signatures with additional

information might improve

performance.

Human intelligence is often

required to correctly interpret

images from satellites and aircraft.

Humans succeed because they use

various types of cues about a scene

to accurately define the contents of

the image. Consequently, it follows

that computer techniques that

integrate and use different types of

information would perform better than

single source approaches. Work to

date in our laboratory supports this

supposition (Harston, 1991 a, b & c).

This research illustrated that

multispectral signatures and

topographical information could be

used in concert. Significantly, this

dual source tactic classified a

remotely sensed image better than the

multispectral information alone.

These classifications were

accomplished by fusing spectral

signatures with topographical

information using neural network

technology.

METHOD

The data came from a Landsat

Multispectral Scanner (MSS) image of

the Black Hills. Thematic mapper (TM)

spectral bands 4, 5, 6 and 7 were

represented as intensity values from

0 to 255 in 512 by 512 byte image

files. Additionally, files of

elevation and ground truth data were

available. The ground truth showed

that broad contiguous areas were

assigned to single classifications.

There were 22 potential

classifications, which covered urban,

farm, range, forest, and water as

major groupings. The four classes of

data used in this study were urban,

farm, range, and forest. These and

the other data files were

georeferenced.

The type of neural network used

was the three layer feedforward

networks with one layer as the

hidden layer. The delta rule was used

to train the output layer and

backpropagation was used to train the

hidden layer. All work was done on

MS-DOS 386/486 VGA microcomputers and

the code was written in C.

One neural network was trained

to classify Landsat multi-spectral

images of the Black Hills. Bands 4,

5, 6, and 7 were used to generate

four classifications based on the

spectral signatures. These classes

included or collapsed several of the

classifications found in the ground

truth into urban, farm, range, and

forest categories. The file of

condensed georeferenced ground truth

classifications was used as the

training criterion. This network was

called the spectral signature

network.

Another neural network was

trained with the four bands of TM

data and a topography file of

altitude or elevation data. This

topological file contained i0 levels

of elevations. These images/files

were georeferenced to each other, and

the ground truth file was used for

training. This network was referred

to as the fusion network.

Training for both networks

consisted of hand picked samples from

the larger image. The experiment was

conducted twice, resulting in two

spectral signature networks and two

fusion networks. The second set of

networks was tested with additional

samples taken from the same image.

These samples were taken from

intersection points of a grid taken

at 50 pixel (horizontal) and 25 pixel

(vertical) locations on the upper

part of the image. There were 25 test

points taken from urban, farm, range,

and forest areas that resulted in

only one range and one urban testing

sample. This kind of grid sampling

and random sampling may be roughly

representative of the types of data

in the image but does not obtain

equal numbers of cases for each

category.

RESULTS

Both spectral signature

networks learned 65.7% of the

training sets (60,021 training trials

for the second network). The first

fusion network learned 73.7% of the

training set, and the second fusion

network learned 75.8% at 63,035

training trails. Further training

resulted in decreased levels of

performance.

The second set of networks,

both spectral and fusion, were tested

with other data taken from the

multispectral image. The spectral

signature network generalized to

these novel data points at 52%, and

the fusion network correctly

classified 60% of these test cases.

These results (see Table i for

results) were carefully reviewed with

the image in view. Sixteen percent of

the errors appeared to be correctly

classified. That is, the ground truth

did not appear to be correct from the

visual examination of the image.

Additionally, 4% of the errors were

not clear from the visual image, and

the ground truth classification could

be debated. The results improved 16%

for both the signature and fusion

network test results when the scores

were corrected for the obvious (not

the 4% border line) ground truth

errors.

Regardless of the corrections,

it is clear that the fusion of

altitude information with spectral

signatures improved the learning.

This improvement was 8% in the first

set of networks and 10% in the second

set of networks. Even the testing

results improved by 8% with the

second set of networks.

A detailed analysis of the

errors indicated that the greatest

number of errors came from

misclassified farm data. Keep in mind

that there were more test samples

from farm areas than from other

areas. The performance in each class

can be seen in Table II. There was

only one range test sample and that

one was misclassified. This resulted

in a 100% error rate for the range

class.

The fusion with elevation data

improved the farm scores from 60% to

80%. Unfortunately the forest

performance was decreased from 87.5%

to 75%. The test sample size was

small at 25 cases so interpretation

of the results may be limited. The

misclassified range sample was one of

the debatable or border line cases.

These results are also found in Table

II.

CONCLUSIONS

The use of altitude data with

the spectral signatures improved the

performance. This fusion of image and

topographic data was simple to do

with the neural networks. The

elevation data improved the farm land

classification but degraded the

forest classification to a lesser

extent. However, the results were

positive overall and suggest that

classification performance could be

further improved if other types of

data were included in the neural

classification process.

The initial impression that the

learning and test results were low

should be interpreted in relationship

to the results from similar

classifications. For example, as seen

in Table III, other types of

statistical classification are also

low (Benediktsson, Swain & Ersoy,

1990; Duda & Hart, 1973). In general,

the neural techniques performed

better, except with the multisource

technique that used information in

addition to the spectral data

(Benediktsson, Swain & Ersoy, 1990).

This multisource statistical

technique included Landsat MSS,

elevation, slope, and aspect data.

This additional data improved the

classification technique to 61%.

Clearly, this result argues for the

fusion with, or inclusion of,

additional cues, regardless of the

classification technique used.

Classification of raw spectral

data without any clean up is also

poor as seen in Table I with 55%

(Campbell, Hill & Cromp, 1989) and

52% or 60% in this study. Neural

154

studies often correct or select the

data in some way. Campbell, Hill, &

Cromp (1989) used only non-boundary

pixels for training. Homogeneous

fields were developed for training

and testing by Benediktsson, Swain,

& Ersoy, 1990. In the present case,

the classification was corrected by

visual inspection of the test cases.

Some of these selection or correction

procedures resulted in respectable

test scored at 70% (Campbell, Hill &

Cromp, 1990) and 76% in this study.

Given the improved

classifications by fusing non

spectral data with the spectral

signature, possibly other

supplementary information can be used

by the neural network system to

improve performance. A shadow file

might be used to improve the

classification of forests on both

sides of the mountain. In another

study, pixel patterns based on

brightness and texture were

classified within each MSS TM band

(Harston, 1991d) . These

classifications were fused with an

additional neural network that

resulted in improved performance.

Possibly, the texture, signature,

altitude, and other data can be fused

with neural technology to obtain even

higher test performance.

The potential for classifying

incoming Earth Observing System (EOS)

data in real time is genuine. See

papers authored by Short, Campbell,

Fekete, Dorfman, and Cromp at the

GSFC for a description of the

importance of this problem. As

indicated in our multi-spectral work

to date, meaningful results are

possible; however, higher levels of

performance may be possible. It seems

reasonable that more can be done with

multi-spectral data when additional

non-spectral information is

integrated with the spectral results.

Further work with seasonal, urban,

hazy, and cloudy images is needed.

Ultimately, a system that could

classify regardless of variations or

conditions could categorize incoming

data in real time. Such

categorizations would be useful for

the Intelligent Data Management (IDM)

project as a basis for defining,

cataloging, and referencing images

for a data base.

Acknowledgements: The data was

supplied by the Goddard Space Flight

Center. Thanks goes to Nick Short and

Semir Chettri at GSFC for their

assistance.

REFERENCES

Benediktsson, J.A., Swain, P.H. &

Ersoy, O.K., (1990). Neural

Network approaches versus

statistical methods in

classification of multisource

remote sensing data, IEEE

Transactions on Geoscience and

Remote Sensinq, 28,4, 540-551.

Campbell, W.J. & Cromp, R.F., (1990).

Evolution of an intelligent

information fusion system,

Photoqrammetric Enqineerinq and

Remote Sensinq, 56(6), 867-

87O.

Campbell, W.J., Hill, S.E. & Cromp,

R.F., (1989). Automatic

labeling and characterization

of objects using artificial

neural networks, Telematics and

Informatics, 6,3/4, 259-271.

Cromp, R.F., (1991). Automated

extraction of metadata from

remotely sensed satellite

imagery, 1991 ACSM/ASPRS/AUTO-

CARTO i0 Proceedinq.

Decatur, S.E., (1989). Application of

neural networks to terrain

classification, IJCNN, 1-283-

288.

Dorfman, E., (1991). Architecture of

a large object-oriented

database for remotely sensed

data, ACSM/ASPRS/Auto Carto i0

Conference, March, Baltimore.

Duda, R.O., & Hart, P.E., (1973).

Pattern Classification and

Scene Analysis, John Wiley &

Sons, NewYork.
Eberlein, S. & Yates, G., (1991).

Neural network-based systemfor
autonomous data analysis and
control, Proqress in Neural

Networks, (Ed. Omid Omidvar)

Vol. i, 25-55.

Fekete, G., Rendering and Managing

spherical data with sphere

quadtrees, available from

NASA/GSFC, Greenbelt, MD 20771.

Harston, C.T., (1991a). A Neural

Network systems Approach to

Image Processing, IEEE Int'l

Conf. on Sys., Man, and

Cybernetics, Oct. 13-16, 1539-

1544.

Harston, C.T., (1991b). Pattern

Identification with a

Computerized Neural Network,

IEEE Southeastcon '91,

Williamsburg, April 7-10, 935-

939.

Harston, C.T., (1991c). Spacial

classification and multi-

spectral fusion with neural

networks, Proceedinqs: ANNA' 91

Analysis of Neural Network

Appl icat ions Conference, May

29-31, George Mason University,

76-82.

Harston, C.T. (1991d) . The

integration of spacial and

Multi-spectral data with neural

networks, Intelliqent

Enqineerinq Systems Throuqh

Artificial Neural Networks,

(Eds. C.H. Dagli, S.R.T. Kumara

& Y.C. Shin), ASME Press, New

York, 435-440.

Harston, C.T. & Schumacher, C.,

(1991). Feature extraction and

fusion with spectral signatures

by neural networks, (in

preparat ion).

Harston, C.T., Zhant, G. & Stewart,

D.W., (1991). Neural Network

Hardware, part of Phase I SBIR

final Report to NASA at the

SCC.

Kagel, J.H. , (1991) . Hardware

implementation of a neural

network performing

multispectral image fusion.

SPIE's International Symposium

on Optical Engineering and

Photonics in Aerospace Sensing,

Technical Conference 1469,

April 1-5, Orlando.

Kulkarni, A.D., (1991) . Neural

Networks for Pattern

Recognition, Proqress in Neural

Networks, (Ed. Omid Omidvar),

V.I, 197-219.

Short, N. (1991). A Real-time expert

system and neural network for

the classification of remotely

sensed data, 1991

ACSM/ASPRS/Auto-Carto i0

Proceedinq, March, Baltimore,

MD.

TABLE I

NEURAL NETWORK TRA ! N ! NG
AND TESTING RESULTS

EXPERZMENT I .

TRZALS TRAZN TEST CORRECT

SPECTRAL NN 65. 7X

FUSZON NN 73. 7X

EXPERZMENT IZ •

SPECTRAL NN 60 , 02 I 6S. 7Z 52X 68X

_USZON NN 63 , Q3S 7S. 8X 6QX 76X

TABLE I!

CORRECTED PERFORUANCE FOR EACH CLASS

SPECTRAL SZGNATURE NEURAL NETWORK

C_RECTED NEURAL NETWORK CLASSIFICATION
OR_RD
T_TH UUAN FARM RAME F_E$T

i

URBAN IOOX - - -

WARM 26. 8X 6iX 6. 7X 6, 7X

RANGE - IOOX OX -

POREST - - I 2. SX B7. SX

ELmVATZON PUSZON NEURAL NETWORK

C_RECTED NEURAL NETWORK CLASSIPICATION
GR_ND
T_TH UUAN FARM RA_E F_ESI

URBAN leex - - -

FARM 2OX SeX - -

RANGE - leeX ex -

FOREST - I 2, SX I 2. SX 75X

157

TABLE III

UULTISPECTRAL IMAGE

CLASSIFICATION PERFORMANCES

NEURAL NETWORKS

CAMPBELL, HILL
& CROMP, 1989

WASHINGTON, DC
W/ GROUND TRUTH

TRAZNZN() TESTING

ANY.,xEL 4870 5570

.o.- 662; 70_/fOUNDRY
PIXELS

BENEDIKTSSON,
SWAZN & ERSOY,
1990

COLORADO MOUNTAINS

CROMP , 1991

BLACK HILLS LANDSAT MSS

.O_E.EOUS 95_FIELDS

HARSTON , 1991

IA)RFREESHORO LAHDSAT llSS
MULTISPECTNAL FUSION SYSTEM

HARSTON &
SCHUMACHER ,
1991

TillS IMAGES
I

HARSTON &
SCHUMACHER ,
1991

BLACK HILLS LANDSAT llSS

ll,.c,, .. 100_

,._LE 10070
/CLASS SET

BRIG.T.ESS 85Z
BRIGHTNESS
& TEXTURE 75_

SPECTRAL
SIGNATURE
ll/ ROAD
DETECTOR
NN SYSTEll

SPECTRAL
SIGMATUR[

SPECTRAL
SIGNATURE
W/ALTITUDE

9570

W/ GROUND
TRUTH

65. 770

75.870

m ED: MINIMUM EUCLIDEAN DISTANCE
IlL: MAXIMUM LIKELIHOOD llETHO0
liD: MINIMUM MAHALANOBIS DISTANCE

MULTISOUilCE: STATISTICAL lllJLTISOURCE ANALYSIS

52.570

60_

6170

4370

6370

STATISTICAL t
CLASSIPICATZON

ED ML lid MULTI-
SOURCE

4770 4970 5070,, 617o

CORRECTED
FOR VISUAL
INTERPRETATION

6870

7670

158

N92-23369

Improved Interpretation of Satellite Altimeter Data Using Genetic Algorithms [/

Kenneth Messa

Department of Mathematical Sciences
Loyola University
New Orleans, LA

(504)865-3340
fax: (504)865-3347

Matthew Lybanon
Naval Oceanographic and Atmospheric Research Laboratory

Stennis Space Center, MS t: 1
(601)688-5263

ABSTRACT

Gerietic algorithms (GA) are optimization
techniques that are based on the mechanics of
evolution and natural selection. They take
advantage of the power of cumulative selection,
in which successive incremental improvements
in a solution structure become the basis for

continued development. A GA is an iterative
procedure that maintains a "population" of
"organisms" (candidate solutions). Through
successive "generations" (iterations) the
population as a whole improves in a simulation
of Darwinism's "survival of the fittest". GAs
have been shown to be successful where noise

significantly reduces the ability of other search
techniques to work effectively.

Satellite altimetry provides useful information
about oceanographic phenomena. It provides
rapid global coverage of the oceans and is not
as severely hampered by cloud cover as
infrared imagery. Despite these and other
benefits, several factors lead to significant
difficulty in interpretation.

The GA approach to the improved interpreta-
tion of satellite data involves the representation
of the ocean surface model as a string of
parameters or coefficients from the model. The
GA searches in parallel a population of such
representations (organisms) to obtain the
individual that is best suited to "survive", that
is, the fittest as measured with respect to some

"fitness" function. The fittest organism is the
one that best represents the ocean surface
model with respect to the altimeter data.

1. INTRODUCTION

Much useful information about oceanographic
phenomena can be obtained from an altimeter
borne on a satellite. In addition to providing
rapid global coverage of the oceans, satellite
altimetry bypasses other (in-situ) measurement
problems. It is not as severely hampered by
cloud cover as infrared imagery, and it also
measures oceanographic phenomena that have
no surface thermal expression. Despite the
benefits of altimetry, several factors lead to
significant difficulty in interpretation. Among
these are atmospheric noise (from water vapor,
ionospheric electrons, solar activity, and so
forth), scale errors (the magnitudes of many of
the errors are greater than the phenomena
measured), some measurements are time
dependent while other related ones are time
independent (the presence of the mean dynamic
topography in the reference surface or "geoid",
for example) and in the calculations of the
geoid itself.

In this paper we first present some background
on the use of satellite altimetry data to measure
the sea surface. The interpretation of these
measurements is complicated by the difficulties
referred to above. In order to improve our

159

interpretation of the altimeter data, we turned to
a technique based on an optimization procedure
believed to operate effectively in nature.
Known as "genetic algorithms" (GA), these
techniques have been shown to be successful in
many environments. Because they search in
parallel a large portion of the solution space,
they are able to distinguish local optima from
global ones. GAs can successfully search
where noise significantly reduces the ability of
other search techniques to work effectively.
We demonstrate the effectiveness of GAs to fit

a model of the sea-surface height to data
obtained from satellite altimetry.

2. BACKGROUND

A satellite-borne radar altimeter measures the
distance from its antenna's electrical center to

the instantaneous sea surface, averaged over
the footprint. Sea level is the difference
between the altimeter-measured distance and

the satellite's height; the latter is determined
independently by tracking and orbit deter-
mination. Then, the difference between sea

level and the geoid, the sea surface height
(SSH) residual, provides information on ocean
dynamics.

The geoid is a graviational equipotential
surface. The marine geoid is the shape that
would be taken by a resting ocean. Since the
geoid does not change, and since the oceano-

graphic component of sea-surface variations is
generally relatively small and does change with
time, the long-term temporal mean of sea level
is a good approximation to the marine geoid.

The situation is different when one tries to use
the altimeter to measure ocean circulation.

Then the "signal" is the small SSH residual that
remains after the geoid is subtracted from sea
level, and the "noise" is any error in knowledge
of the geoid. For practical reasons, a large part
of the information that goes into "geoids"
comes from altimeter measurements them-

selves. When there are permanent oceano-
graphic features such as the Gulf Stream, there
is a significant time-independent "dynamic
height" component. Being independent, this
component cannot be distinguished from the
true geoid without additional information.
Subtraction of a geoid containing this term

from the altimeter-determined sea level may
introduce a serious error (Lybanon et al.,
1990).

One model for the sea surface height is realized
as the difference between the expected dynamic
height component and the reference surface
error. This model can be tested using
GEOSAT altimeter measurements of the Gulf

Stream region, which has a strong mesoscale
signal (Caiman, 1987). The following model
has been proposed by Lybanon et al. (1990):

SSH = Atanh[B(X-D-E)] - Ftanh[C(X-E)] - G (1)

where X is the along-track coordinate of the
satellite. The first term represents the
instantaneous Gulf Stream, the second
represents the mean Gulf Stream, and the third
term is an overall bias due to orbit error or

possibly other errors. The coefficients in each
hyperbolic tangent represent the amplitude, the
steepness of the sloping part, and the position
of the curve, respectively. By fitting this
model to the altimeter data, one can add the

modeled mean Gulf Stream profile to the
instantaneous sea surface height to allow a
better description of the Gulf Stream. The key
to this proposed technique is finding the
coefficients from Equation (1) that best fit the
altimeter data. Lybanon et al. (1988) have
attempted to use standard mathematical curve-
fitting schemes, but have achieved only mixed
success. We propose using GAs to aid this

process.

3. GENETIC ALGORITHMS

Genetic algorithms are optimization techniques
that are based on the mechanics of evolution
and natural selection. In contrast to other

methods that rely on a point-to-point search of

the domain space, GAs use a large sample of
points from the domain. Each point, called an
"organism", is a candidate solution of the
problem in question. The large sample of
candidate solutions (called a "population") is
modified through successive iterations. Each
modification is based on ideas taken from

Darwinian natural selection. Although random-
ness is a part of the process, each modification
is guided by the candidate solutions that are

most successful. These "fittest" organisms

- 160

contribute the most to succeeding iterations in a
simulation of "survival of the fittest". Each

successive population is called a "generation".
Thus we have an intitial generation, (3(0), and
for each generation G(t), the GA forms a new
one, G(t+l). An algorithm to implement GAs
is given by:

generate initial population, G(0);
evaluate {3(0);
t := 0;

repeat
generate G(t+l) using G(t);
evaluate G(t+l);
t := t+l;

until solution is found.

Like all generate and test methods, the GA
requires the two main steps of generation and
evaluation. In order to evaluate a generation, a
fitness function is needed. In nature, a species
responds in some way to environmental
pressure. The GA analog to this pressure is the
fitness function. It is built from domain

specific information and returns the relative
merit or fitness of the organism (Goldberg,
1989).

3.1 Representation

Our problem entails finding coefficients A, B,
.... G which yield the best fit of the altimeter

data when used in Equation (1). The
measurement of the goodness of fit with

respect to the data D is the "fitness function".

Since we are searching for real number values
for the coefficients A, B G, the organisms
for the GA used here are vectors r = <rA, ra,
.... ro> of real numbers. The fitness of such

an organism is the degree to which the model
equation SSH(r) successfully fits the data.

This view of the representation is useful at the
higher level of the curve-fitting problem.
However, the genetic algorithm works at a
lower level--the level of bits. In order to

successfully use the GA, we need to consider a
representation of the real numbers ri at the bit

level. Given upper and lower bounds for each
ri, ui and l i respectively, we can look at ri as an

unsigned binary integer with m bits and
calculate its value with respect to li and ui.

Given a binary integer b where b is in
[0, 2k -1], we can derive its corresponding real
value using the formula

r=b/2m*(u-1) + 1 (2)

where u and I are the upper and lower bounds
respectively. Combining these two levels, we

construct an organism as 0 = <bA1 bA2 ...

bAm, bB1 bB2 ...bBm, ...,bG1 bG2 ...DGm >

where each binary integer biI bi2 ...bim

corresponds to a realnumber riwhich licsin

the interval[li,ui] for i = A, BG. The

correspondence isgiven in (2).

Computing the value of the fitness function of

an organism 0 requires two steps: first,

converting each binary integer bil bi2 ... bim

into its corresponding real value ri; then,

second, evaluating the curve SSH(rA, ra

rG) at the data points of 1).

3.2 Evaluation

Since the fitness function is a measurement of

how well the organism fits the data, it focuses
the GA toward the solution. The fitness
function used here is modeled after least

squares/regression. An organism 0 is
converted into a vector of real numbers, r --

<rA, rB, rG> using equation (2). The
fitness is then computed as the sum of the
squares of the differences between the
SSH(r;xi) and Yi (that is, the residuals). Thus,

fitness(0) = Z (SSH(r;xi) - yi) 2 (3)

where the summation is a taken over all data

points (xi, Yi) of I). With this fitness function,

a value of 0 is considered a perfect fit and an
organism is highly fit if its fitness value is low.

161

3.3 Convergence

The GA is designed to improve the relative
merit of the population over time. While the
average fitness of one generation may be lower
than the preceeding one, or while the best
solution from one generation may not be as
good as the best from a previous one, in
general, fitnesses improve as generations
unfold. Figure 1 in the appendix is an example
of this point.

In earlier generations, there is a great deal of
variability among the organisms in a single
generation. There is a wide range of fitness
values in these earlier generations. As happens
occasionally, a few organisms are generated
whose fitnesses are exceedingly poor. This
reduces the average fitness of the overall
generation. The number of poor solutions
generated is in proportion to the fitness of the
generation as a whole. Thus, in the early
generations, a larger number of poor solutions
axe formed. However, as the generations
improve and larger numbers of the organisms
have good fitnesses, the occasional poor
performer does not affect the population as
much. The effect of these less fit organisms in
later generations is minimal.

As the generations improve, the average fitness
stabilizes. As a result, most of the organisms
are nearly identical. This stabilization is called
"convergence", and the GA is said to converge
to the organism that appears most often. Of
course, at convergence, nearly all organisms
are identical. This commonality is the solution
to the problem.

3.4 Operators

GAs are based on many of the same principles
as those found in natural selection. They
employ several operators and principles that are
generally derived form those that occur in
nature. There are three principal operators at
work in GAs: selection, crossover and
mutation. The first of these, selection, is the

analog of the principle in natural selection that
organisms that are most fit are most favorably
disposed for participation in mating, thereby
passing their genetic information to their
offspring. The selection operator chooses
individuals from the population so that those

with high fitnesses have greater probability of
being selected. This focus toward the highly fit
individuals is what drives genetic algorithms.

The method of selection that was used here is

stochastic sampling without replacement, called
"expected value" by Goldberg (1989). In
addition, we have used de Jong's (de Jong
1975) "elitist" strategy, whereby the single best
organism form one generation is placed
unchanged into the next generation. This
strategy gives a little more weight to the best
organism than might be achieved from selection
alone and prevents the possibility that the best
organism might be lost early through crossover
or mutation.

The GA analogy to mating is called crossover.
The crossover operator provides a mixing of
the genetic material from the parents, and
globally, it mixes the genetic information of the
whole population. It is the mixing of the
"genes", the stirring of the pot of genetic
material, that gives the GA robustness. The
two organisms chosen by selection are
combined to form a new individual with

similarities to both parents. If the mixing is
done carefully, a large amount of genetic
material can be tested. Although selection
focuses the genetic algorithm, it is crossover
that adds variety.

We employed a "two-point" crossover. Two-
point crossover proceeds as follows: Once the
organisms (the "parents") have been selected
for mating, two bit positions are chosen at
random. The middle segments between these
bit positions of the two organisms are
interchanged to form two new organisms.
These new organisms (the "offspring") are
added to the next generation. The process of
selection and crossover is repeated until the
new generation has the same number of
members as the previous generation.

While selection and crossover are the chief

operators used in GAs, there are numerous
other minor operators proposed to strengthen
GAs under certain circumstances. It has been

shown that for certain applications, these minor
operators can add to the GA's efficiency or
prevent it from converging to a local optimum
rather than global one. For example, it
sometimes happens that the GA converges to a

162

solutionprematurely. This is due to the fact
thatcrossoveronly mixesthe geneticmaterial
that is present in the initial population; it
doesn'tintroduceanynewmaterial. In nature,
new genes are introduced into a species
throug.hmutation. Analogously in GAs, a
mutation operator is used to modify an
organism occasionally in order to add new
genetic material into the population and to
preventprematureconvergence.

We useda mutation methodthat addsa real
valuee to (or subtractsit from) theorganism's
value at oneof the coefficents. We kept the
probability of a mutation low. Thus, if by
chance a particuplar organism was to be
mutatedat one of its coefficients, r, then a
small ei wasaddedto (or subtractedfrom) r.
Thevalue of e is a power of 2 ranging from 1

to2 m. Thus, if we letei =<0...0 10 0>

with 1 in the i-th position and O's elsewhere,

then this mutation method effectively adds ei to

(or subtracts Ei from) the coefficient of the

organism to be mutated.

4. RESULTS

The GA technique outlined above is dependent
on the choice of boundary points li and r i for

each i = A, B G. Knowledge of the
problem domain may by useful to ascertain
these boundaries. If the knowledge is inade-
quate, a degree of experimentation may be
required. Our knowledge of the problem,
gained in part by previous work (Lybanon et
al., 1988), gave us some information about the
coefficients. We knew that the amplitudes of
the curves (coefficients A and F) were positive
and less than 1. Likewise we knew the slope
coefficients (B and C) were also positive and
less than 1. Hence, for all these values, we
used domain intervals [0, 1]. The error of G
was small, but its sign was unknown to us.
We used [-1, 1] as its domain interval. The

difficult values to determine were the position
coefficients D and E.

We began with intervals of length 100 for each
of D and E. We were prepared to test several
intervals of this length, [-50, 50], [-75, 25],

[-25, 75], and so forth. If necessary, we might
have had to increase the length of the intervals
to 200 or more. In any case, we were prepared
to do the experimentation needed for the GA.
The results given below show that we needed
only the second interval mentioned.

After several runs using the domain interval
[-50, 50] for coefficents D and E, it became
clear that this domain did not include the value
for E, and perhaps not D either. One run

placed the optimal E exactly at -50, indicating
either a coincidence that we chose an endpoint
of the domain interval very near the optimal
value or the possibility that E lay below -50.
The other runs had somewhat low errors, yet
the values of the coefficients were not near each

other. This could also mean that we stopped
the GA too soon, before it had a chance to

converge. See Table 1. On the strength of the
former observation, we abandoned the [-50,
50] interval for E in favor of [-75, 251. If
indeed -50 was the optimal value for E, this
new interval would bear this out. If the error

was due to the optimal E being smaller than
-50, then this or another interval would be
better. If the results for the new interval were

likewise inconsistent, we would allow the GA
to run for several generations longer and
compare results. Since D did not seem to
suffer the same error as E, we were not quick
to adjust D's domain interval. Table 2 exhibits
the results obtained with these new intervals.

The value of E derived here supports our earlier
decision to reduce the lower bound for E's
interval.

Table 1: Coefficients obtained with
intervals [-50, 50] for D and E.

coefficient run # 1 run # 2 run # 3
A .273373 .191273 .240241
B .435305 .499703 .504699
C .058454 .008573 .008887
D 15.7059 -46.5097 -40.3814
E -50.0000 13.6979 7.37317
F .260792 .640602 .851496
G -.028586 -.352537 -.414537

error .612744 .903165 .825254

163

Table 2. Coefficients obtained
[-75, 25] for E and [-50, 50] for

with intervals
D.

coefficient run # 1 run # 2 run # 3
A .186314 .186297 .186302
B .757704 .757711 .757642
C .174833 .174889 .174872
D 24.7986 24.8003 24.7997
E -58.7977 -58.7995 -58.7989
F .162858 .162844 .162848
G -.025868 -.025869 -.025868

error .558747 .558747 .558747

Table 3. Coefficients obtained after several

stages of reducing the intervals

coeffic_nt run # 1 run# 2 run # 3
A .186290 .186290 .186290
B .757685 .757680 .757682
C .174907 .174907 .174907
D 24.8009 24.8009 24.8009
E -58.8000 -58.8000 -58.8000
F .162838 .162838 .162838
G -.025870 -.025870 -.025870

error .558747 .558747 .558747

To contrast these results, we tried the interval
[-25, 75]. We obtained inconsistencies in all
runs, as might be expected, as the correct value
of E was far removed from this interval.

In this problem, we had some knowledge of
the coefficients. However, one can obtain very
accurate results with very little knowledge, if
one is allowed to experiment. Beginning with
a domain interval of [-100, 100] for each
coefficent, after several runs we were able to
revise our results for A, F, and G as lying in
the interval [-5, 5]. The experiments gave us
no information about B, C, D, or E, however.
We ran the GA several more times on the

revised intervals. At this point we were able to
further narrow the intervals for some of the

coefficients. By repeating this process through
just four stages of interval reduction, we were
able to obtain the results in Table 3.

When small enough intervals are used (gained
through either experimentation or knowledge of
the model), one can get a very accurate fit of
the data. With an accurate fit, the dynamic
height component can be removed yielding a
more accurate interpretation of the data. See
Figure 2 in the appendix. It shows the original
altimeter data of the Gulf Stream and the

adjusted values after the dynamic component
has been removed.

5. SUMMARY

We have demonstrated that genetic algorithms
can be used successfully to improve the
interpretation of altimeter data in a model for
the sea surface height. There are several
strengths to this approach. First, it does not

require complex calculation nor is it difficult to
set up. Second, it is accurate in its present
form. With 32 bit representation of integers,
we easily obtained 4, 5, or 6 significant digits.
More accuracy can be achieved with minor
revisions. Finally, the results were consistent,
although the initial genetic algorithm parameters
needed to be established at the beginning.

The method suffers from some weaknesses,

however. First, the initial set of parameters is
not univerally known. There must be some
experimentation on these parameters initially
and more experimentation on these if there is a
significant change in the structure of the model.
Second, the method requires some knowledge
of the model coefficients. This knowledge can
be gained through inspection of the data or of
the function itself, or it can be gained through
experimentation. In either case, the genetic
algorithm method is a viable technique for
improving the interpretation of the altimetry
data used in this model.

6. ACKNOWLEDGEMENTS

This research was sponsored by the U. S.
Navy Office of Naval Technology, CDR Lee
Bounds, Program Manager, and by the Space
and Naval Warfare Systems Command, LCDR

William Cook, Program Manager.

Kenneth Messa's work was partially supported
by the Naval Oceanographic and Atmospheric
Research Laboratory through the U. S.
Navy/ASEE Summer Faculty Research
Program.

184

This is NOARL Contribution Number PR

91:121:321. It is approved for public release;
distribution is unlimited

7. REFERENCES

Baker, J. E. (1987). Reducing bias and
inefficiency in the selection algorithm. Genetic
Algorithms and Their Applications:
Proceedings of the Second International
Conference on Genetic Algorithms, 14-21.

Caiman, J. (1987). Introduction to sea-surface
topography from satellite altimetry. Johns
Hopkins APL Technical Digest 8(2), 206-211.

Daniel, C. & Wood, F. S. (1980). Fitting
Equations to Data, 2rid Ed. New York: John
Wiley & Sons.

De Jong, K. A. (1975). An analysis of the
behavior of a class of genetic adaptive systems.
(Doctoral dissertation, University of
Michigan). Dissertation Abstracts International
36(10), 5104B.

Goldberg, D. (1989). Genetic Algorithms in
Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley.

Grefenstette, J. (1986). Optimization of
control paramenters for genetic algorithms.
IEEE Transactions on Systems, Man and
Cybernetics, Vol. SMC-16(1), Jan/Feb 1986.

Guest, P. G. (1961). Numerical Methods of
Curve Fitting. Bristol, Great Britain:
Cambridge University Press.

Holland, J. (1975). Adaption in Natural and
Artificial Systems, Ann Arbor, Michigan:
University of Michigan Press.

Lybanon, M. & Messa, K. (1991). Genetic
Algorithm Simulation to Improve Altimetric
Sea-Surface Height Residuals, to appear in
Proceedings of SimTec "91.

Lybanon, M., Crout, R., Johnson, C. &
Pistek, P. (1990). Operational
altimeter-derived oceanographic information:
The NORDA GEOSAT ocean applications
program, Journal of Atmospheric and Oceanic
Technology, 7(3), 357-376.

Lybanon, M., Johnson, D. R. &
Romalewski, R. S. (1988). Separation of the
mean Gulf Stream topography from an
altimeter-derived reference surface, EOS

Transactions, American Geophysical Union,
(69)44, 1281.

Lybanon, M. & Crout, R. L. (1987). The
NORDA GEOSAT ocean applications
program, Johns Hopkins APL Technical
Digest, (8)2.

Sub, J. Y. & Van Gucht, D. (1987).

Incorporating information into genetic search.
Genetic Algorithms and Their Applications:
Proceedings of the Second International
Conference on Genetic Algorithms, 100-107.

165

4.5

4.0

3.5

3. dPideal D average

2.5

2.0

1.5

1.0

0.5

0.0

F

i

t

n

e

s

s

1 23 4 56 789 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Generation

Average fimess of a population demonstrating convergence
in a Genetic Algorithm

0.4

0.2

_o> 0.0"

_ "'-0.4

-0.8

''_'_____ -m. Original
•"_ Corrected

-1.0 , , , , ,
36 37 38 39 40 41

Latitude
(deg)

42

Figure 2 Original altimeter data and Correction.
displaced for easier viewing.

Correction term has been

Knowledge Engineering

167

The Use of

Multiple

+

Artificial Intelligence
to Improve the

Techniques /

Payload Integration Process

Dannie E. Cutts 1

Space Operations Department
Teledyne Brown Engineering

Huntsville, Alabama

/

_. + :

- +_

Brian K. Widgren
Manager, CDMS Integration

PayloadImegrationEngineering Department
Teledyne Brown Engineering

Huntsville, Alabama

Abstract

A maximum return of science and products with a minimum expenditure of
time and resources is a major goal of mission payload integration. A critical
component then, in successful mission payload integration is the acquisition
and analysis of experiment requirements from the Principal Investigator (PI)
and Payload Element Developer (PED) teams. This paper describes one
effort to use Artificial Intelligence (AI) techniques to improve the acquisition
and analysis of experiment requirements within the Payload Integration
Process.

The authors may be contacted at:
Teledyne Brown Engineering, MS-172
300 Sparkman Drive NW
Huntsville, Alabama 35807-7007
(205)726-5929

...... "" _I ' "_1 B!+AN_ NOT FtLP_-_TD

D._W.8_E]I]_

As the payload integration contractor to
Marshall Space Flight Center for Spacelab
payloads, Teledyne Brown Engineering
(TBE) has been heavily involved in the

acquisition, analysis, and integration of
payload requirements for a number of years.
NASA/MSFC and TBE are currently involved
in efforts to streamline and improve the
mission integration process. Part of this

improvement effort involves the use of Expert
Systems in several areas. A number of
benefits are anticipated from the use of these
systems, including:

• A better understanding by the PI/PED
teams of STS and Spacelab capabilities,

• On-line help and documentation
capabilities,

• On-line data validation rules to check

data for accuracy and reasonableness,
• A more consistent approach to

experiment requirements gathering and
analysis,

• Increased quality in the requirements
definition data provided to the
integration team, resulting in fewer
iterations between the PI/PED and

integration teams,
° Increased quality in the analyses

performed on those requirements,
° Reduction in the need for members of

the integration team to travel to PI/PED
sites,

• Retention and documentation of

corporate expertise in payload
integration, and

• Training tools for Payload Integration
Engineers.

Throughout the Spacelab integration
process, averaging about 42 months from
Authority to Proceed (ATP) to the actual
mission, a series of readiness reviews are

held to ensure that requirements definition and
integration are progressing on schedule. The
current approach to gathering experiment
requirements is human intensive requiring
numerous iterations between the

PI/PED/Integration teams [FIG 1].

Much of this iteration takes place as a
result of changing requirements. A volumous

"data pack" of information describing STS
and Spacelab capabilities and constraints is
sent to each PI/PED. Instructions outlining
responsibilities and deadlines are included in
the pack along with directions for completing
the requirements definition forms. Digesting
and interpreting this data pack can present a
formidable task for the PI/PED. As a result,

requirements are often submitted late, poorly
defined, or incomplete. All these situations

can significantly affect the readiness reviews
and thus the entire integration process.

This paper describes one project within
TBE to use Expert Systems to automate
portions of the acquisition and analysis effort
for the Commanding and Data Management
system (CDMS) requirements. The
acquisition and analysis of CDMS
requirements begin very early in the mission
design process and impact nearly every
discipline. Historically, changes to CDMS
requirements take place throughout the entire
life of the mission design cycle. These
changes come about for various reasons
including users not understanding Spacelab or
STS capabilities, changing hardware/software
configurations, design reviews, operational
considerations as well as problems resulting
from the complex interactions between an
individual experiment and the integrated
payload. The high cost of incorporating
changes late in the integration process made
the CDMS expert system a "high payback"
candidate for development.

CDMS DESCRIPTION

CDMS data consists of a set of PI/PED

generated documents defining requirements
for on-board data processing and display,

telemetry monitoring and experiment
commanding by the Spacelab experiment
computer as well as downlink requirements
and POCC (Payload Operations Control
Center) processing requirements.

The POCC supports extensive data
processing capabilities including ground
monitoring of telemetry data, acquisition and
storage of science data, as well as ground
commanding of the on-board experiments by
the PI.

170

PI/PED Integration
Teams Team

_ (CDMS Rqmts /

i xo.
J Integration l

q _,Tearn .)

: Inc°nsis/t°nci°s//"C !_a
. . . DM ta '"

• OftnenxeX'r_Le_ n/Irr/(Cp.#, ..N I Da_CuhangatSd are
p / _ (ongmal) I betwee n

J_ ¢ _4-7_ disciplines often

i/ CDMS Rqmts I /' 1 -- resulting in

W I Exp #N l / , _ !,nconsistent data

_ _ (_CDMSData J

/ IIII Exp#l. N I
/ "1.[! (copy) I

/ r++ .\
Data received from the (Payload) ,

PI/PED is checked. LOperati°ns_ _ /
duplicated and sent to

appropriate disciplines [_CDMS Data '"_r-or returned to the IIII Exp # 1 .. N

PI/PED for correction _ (copy) .

POCC

peration_

/
Integrated

CDMS

Database

The resulting
data bases

often reflect

inconsistent

data. /

Database

Current approach to acquiring & analyzing CDMS requirements

[FIG 1]

These requirements are defined in a set
of eight tables generated by the PI/PED team
and expanded by the integration team and
other contractors.

CDMS REOUIREMENTS ACOUISITION

Early in the mission design process,
PI/PED teams are required to supply

preliminary CDMS requirements. Since the
initial submission of these requirements takes
place very early in the design phase, some

171

requirements may not be firm because of
unresolved hardware or software issues. The

fact that these requirements remain unresolved
may or may not be identified in the submitted
documents. The integration team may have
no way of knowing which requirements are to
be supplied later. Often these "missing"
requirements are not identified until late in the
integration process resulting in reworks or
delays. With the automated acquisition tool,
PI/PEDs can flag data as "TBS" so that the
integration team can follow up on later
definition.

Under the current approach for gathering
CDMS requirements, the PI/PED supplies
requirements in paper format to the CDMS
engineers. These engineers then do a manual
cross checking of the paper inputs to ensure
accuracy and agreement across tables before
inputting it into an electronic format. Some
errors in the data are missed during the "paper
analysis" while others occur as a result of
operator entry errors. Errors identified in the
PI/PED supplied requirements are returned to
the PI/PED for revision. Submission of

better initial data from the PI/PED will help to
shorten the number of these iterations that

take place.

These CDMS data are currently stored as
text files on either VAX or Macintosh

computers. Various analyses (both manual
and automated) are performed on these text
files and modifications are made directly to
them. After analyses are performed on
individual files representing experiments, an
integrated CDMS "database" file is
constructed by concatenating the individual
experiment files. Analyses are then
performed on the complete file representing
the integrated payload.

In an effort to improve the above process,
we plan to have the PI/PED teams submit
CDMS requirements electronically using an
acquisition tool [FIG 2] being developed by
TBE.

This tool utilizes a number of expert
system techniques including limited "object"
support, constraint checking, and a simple

form of retraction in which data is valid only
when supported by other data (Doyle 1981).

When the supporting data changes, the
"supported" assertion is changed. These
"dependency" relations are implemented in a
hypertext environment in which data objects
contain lists of other data objects on which
they are dependent and which are dependent
on them. This "dependency" matrix is used

to guide the dialogue with the user, provide
explanations and support data retraction.

Some problems in the current data
requirements definition occur as a result of the
user not understanding STS or Spacelab
capabilities. To assist in this area, the
automated acquisition tool offers explanations
of the questions being asked which can
include detailed descriptions of hardware or
carrier issues. In addition, we have
implemented a "why" facility which can
provide context sensitive information on why
the particular datum is important. This
capability is closely tied to the "dependencies"
relations mentioned earlier. This acquisition
system will assist the PI/PED teams in

supplying complete and correct requirements
definitions to the integration team.

CDMS REOUIREMENTS ANALYSIS

The second component of this process
improvement effort deals with the analysis of
the acquired CDMS data. Once the PI/PED
generated requirements documents reach the
integration team, they must be checked
independently for problems and then
combined with other experiment requirements
files to perform integrated analyses. Error
checking in the automated requirements
acquisition system described above ensures
that the data arrives relatively error free.
Since the documents are submitted

electronically by the PI/PED teams, errors
introduced during the data input phase are
eliminated. Engineers are also freed from the
task of inputting the PI/PED data. The
current text file storage of CDMS
requirements data is being replaced with a
relational database. Having these data stored

in a relational database allows the integration
team to more easily manipulate the CDMS
data.

172

rPI/PED

Teams
Integration The resulting data bases

Expert System Team are more consistent since
techniques assist integration and analyses

were performed on the
PI/PED in providing fCDMS _ same data across all
consistent, correct Integration I disciplines

requirements k'_Te,a_, -") _k

" t/
\ :Ex .2/

_ : / _
/F PaylOad 5 ("Pocc '_

/ [OperationsJ [OperationsJ
A "Single" data " _ J _ Y
source supports data
consistency in a
concurrent design
environment

As these analyses progress, the
integration team adds a significant amount of
mission dependent data. The data supplied by
the integration team is also automatically
checked as it is entered by the engineers.

As mentioned earlier, CDMS data impacts
numerous other disciplines within the
integration team. In the past, a significant
amount of time was spent by the CDMS
group in inputting and checking PI/PED data
before that data could be made available to

other disciplines. Under the automated
acquisition and analysis approach, the data

Automated approach to acquiring

and analyzing CDMS requirements

[FIG 2]
arrives in electronic format with significant
data checking already performed. As a result,
portions of the data can be made available to
other disciplines much faster. This analysis
tool is used to transfer the PI/PED

requirements from the electronic file format
submitted by the PI/PED to a relational
database. The user interface of the analysis
tool also allows the integration team to
manipulate the data and generate various
report formats. Rules are used to access the
data stored in the relational database to

perform validity checks within and across
experiments [FIG 3]. Both mission

dependent and mission independent checks
are made.

173

ii

Knowle_ee_e_____

Base _ Data

_ J

Relationship between User,

Domain Knowledge & Data

[FIG 3]

REQUIREMENTS DATABASE

In support of this automated acquisition
and analysis effort, TBE is establishing an
integrated "requirements database" using
Oracle. This integrated requirements database
will provide a single source of experiment
data from which all members of the

integration team will work. This will
eliminate the problem of different teams
working with different versions of the same
data. Impacted users can be automatically
notified when data has been changed. We
also are planning to use the integrated
database to generate portions of deliverables
(including documentation) for use within TBE
and NASA as well as other subcontractors. It

is anticipated that some of the applications
accessing the integrated requirements database
will utilize expert systems while others will be
conventional systems.

METHQDOLOOY

In the design and development of both the
acquisition and analysis applications a number

of issues arose. They are listed and briefly
discussed below:

1. Knowledge Acquisition

Most experts agree that knowledge
acquisition is one of the most (if not THE
most) critical components in the development
of knowledge based systems - and often the
most labor intensive (Gaines 1989).
Although tools exist for the automated
acquisition of domain knowledge, we chose
to use manual interview techniques for this
effort since the knowledge acquisition task in
this case was relatively straightforward. A
great deal of knowledge about data
relationships is already documented in a set of
detailed instructions to the PI/PED supplying
CDMS requirements (MDC 1991). This
document covers only the on-board CDMS
data requirements (four of the eight tables
populated by the PI/PED), but did provide an
excellent starting point for acquiring domain
knowledge. There were several reasons why
this document provided only a starting point,
and not the entire knowledge base. First, the
document only defines data relationships and
constraints. This type of knowledge, while
important, does not support any type of

intelligent dialogue between the s.ystem and
the PI/PED user. Also missing were
heuristics and explanation knowledge of how
a human expert would query the PI/PED to
acquire CDMS data. This control knowledge
will be discussed later.

Since the PI/PED customarily provides
paper copies of CDMS requirements and no
human is usually involved in the initial
acquisition of CDMS data, no documentation
of the acquisition process existed. As a
result, interviews were held with CDMS

domain experts in which they started with the
rules coded from the CDMS instruction

document (MDC 1991), and then added
control knowledge and explanation
knowledge to the rules to provide a dialogue
structure for the acquisition system to follow
in gathering CDMS requirements from the
PI/PED. (Craig 1990) describes a relationship
between domain and control knowledge
which we largely followed in this effort.
[FIG 5] is taken from that reference.

174

A conventional interview technique was
followed in which the knowledge engineer
interviewed the domain specialist (often using

the partially completed tool), encoded the
acquired knowledge, and then supplied the
updated system to the domain specialist for
further testing [FIG 4]. (Gruber 1987)
presents three principles of design for
knowledge acquisition systems. Although
that paper discusses automated acquisition
approaches, the principles are worth noting.
The first principle was that the knowledge

engineer should provide a "language of task-
level terms natural to the expert yet sufficient
to solve the problem". In this application,
knowledge of how to validate the data was
already expressed to a large extent as rule
structures. The second principle to be

followed was that "representational primitives
should be explicit and able to stand alone".
Again, this posed no real problem since the
existing instructions for requirements
definition were already stated in an "IF-
THEN" format. The third principle dealt with

"avoiding generalizations except when
necessary". We found that when the domain
expert attempted to generalize, we often
encountered new knowledge in the form of
"exceptions to the rule". In this application,
attempts to generalize often helped elicit

knowledge.

__tAcquire domain knowledge

via interviews with domain

specialists

Encode acquired knowledge

II

Test encoded knowledge I

against existing data I
Elicit- Encode-Test cycle

[FIG 4]

As the interviews were completed, the
developer encoded the rules acquired during
the interview. The tool was then made

available to the domain experts for testing.
One result of this incremental "ELICIT -

ENCODE - TEST" development approach
was that we were able to start using portions

of the analysis system early in the
development cycle. Another result was that
customer confidence in and expertise with the

tool grew during development.

2. Knowledge Representation

(Kitto 1989) points out that a failure to map
properly between the Knowledge Acquisition
technique, Knowledge Acquisition tool,
Knowledge Representation methodology and
the problem type will likely cause the effort to
fail. During the domain expert interviews,
most knowledge was structured as "IF-
THEN" statements. This led to the use of a

rule-based representation for domain
knowledge, with the underlying parameters
modeled as objects. The mapping between
the Knowledge Acquisition technique and the
Knowledge Representation paradigm was
very straightforward and allowed us to model
the domain naturally. In addition, the
knowledge encoded in the knowledge base
was easy to understand and maintain.

3. User Interface

User acceptance of a system is highly
dependent on an appropriate human-computer
interface. This interface must be responsive

to a range of user abilities. In this effort, we
have made no attempt to build user models to
account for various ability levels. Our

approach has been to provide information at a
relatively high level, but to provide help in
questions asked of the user and by providing
explanations upon request. Initial experiences
with the automated analysis tool indicate that
this approach is sufficient. (Wexelblat 1989)
gives an excellent overview of
characterizations of users by ability level

while (Swigger 1989) addresses research
issues in human-computer interfaces for

tutoring systems.

175

User Interface

Meta Control Knowled(

Flat Domain Knowledc

ions

Data Values

KB

Strategy,
&Decision,,

/
/

Relationship between knowledge, data and explanation

[FIG 5]

The interface to the automated acquisition
tool had to provide PI/PED teams with an
easy to use "point and click" interface which
could provide context sensitive help when
appropriate. The tool was designed to assist
the PI/PED user in "constructing" CDMS
requirements. The interface to the automated
acquisition tool is designed to query the user
for requirements definition. As the user is

asked questions about parameter definitions,
help is provided and constraint information is
available. The queries are formed by
inserting context sensitive information into a
text string. For example, if a constraint
existed between two data items A and B such
that A has to be less than B, and if A had the

value of 30, the query might look something
like.. Provide a value for B that is greater than
30... If the user then asked for an

explanation, he would be told about the

relationship between A and B and the existing
value for A. At that point, he could choose to
supply B or modify A.

The interface to the automated analysis
tool to be used by the integration team was
designed to look much like the data formats
the engineers were accustomed to. Less
explanation is supplied and less control is
exercised by the system. Both these tools
were implemented in a hypertext tool
(SuperCard) which allowed users to move
through the data in an unconstrained fashion.

176

The requirements acquisition tool was
somewhat more constrained than the analysis

tool because it uses the dependencies
relationships between the data items to guide
the dialogue between the user and the system.

4. Dialogue Control

Dialogue control in the requirements
acquisition tool was implemented using the
dependency matrix mentioned earlier. The
acquisition process begins with a leadoff
series of questions, which are then used to
guide or constrain further questioning. Also,
much support information is provided in the
query itself. This helps the user to
understand the significance of the question.
For example, if the user specifies that the
parameter being defined requires on-board
displays, the system then queries for further
information on the display requirements and
reminds the user that he had earlier provided
the requirement for displaying the parameter.
If the user indicates that the parameter will not
be displayed on-board, he is not asked for
unnecessary information - a situation that
cannot be avoided in the paper CDMS
requirements forms. This control, however,
does not prevent the user from modifying
earlier definitions. The details of how this is

accomplished is discussed in the next section.

5. Consistency Maintenance

One of the problems with the old paper
requirements approach is that users often have
a need to modify requirements. As in the case
given above, if a user wants to retract the
requirement for on-board display of a
parameter, all display requirements data for
that parameter must be withdrawn. With the
paper approach, relations between data across
tables cannot be linked in such a way that data
changed in one table changes all its associated
data. In the automated acquisition system,
however, these relations are modeled in a
dependencies matrix so that when a datum
changes, rules are triggered that modify all the
associated data. This approach to consistency
maintenance is loosely based in Doyle's
justification-based truth maintenance system
(Doyle 1981).

6. Explanation

(Craig 1990) and (Fennel 1990) point out
that in many rule-based expert systems,
explanation and why facilities are
implemented using the rule firing chain to
trace each step of the inference process. They
point out that this approach is often not
appropriate for providing meaningful
explanations since the rule tracings often
contain inferences at the wrong level of
abstraction. They implemented a layered
control architecture [FIG 5] in which

explanations can be provided on various
levels (i.e. explanation of what a datum
represents, constraint knowledge about that
datum, etc.) This structure was largely
followed in developing the explanation

system.

(Clancey 1988) identifies four categories
of explanation knowledge closely related to
those described above:

a. Heuristic Rules which, identify
relations between data and rules using
that data,

b. Structure knowledge, which identifies
dependency relations among data,

c. Strategy knowledge, which identifies
the procedure for applying rules, and

d. Support knowledge, which provides
the justification for rules.

The dependency matrix (which identifies
dependencies between data elements) is used
by the explanation facility to provide
justification for why a particular datum is
needed. Explanation about a particular datum
is statically defined either in textual or
graphical format and is provided to the user
upon request during a session.

IMPLEMENTATION

This Expert System is currently hosted on
a Macintosh Computer using Nexpert Object
for knowledge representation and inference
control, Oracle for data storage, and
SuperCard for the interface. The availability
of commercial bridges between all these
applications made interfacing them
straightforward. Although some inquiries
have been made as to the possibility of

177

rehostingthesoftwareon other platforms, no
work has begun in this area. Both the
knowledge base constructed in Nexpert and
the data stored in Oracle will transfer to a

wide range of platforms. SuperCard runs on
the Macintosh platform only, but other
interface tools are being considered.

FUTURE DIRECTIONS

As well as improving the existing payload
integration process for Spacelab, this
technology is also applicable to other
aerospace applications including the Space
Station Freedom program. We expect many
Spacelab experiments to transition to Space
Station and anticipate that having many of the
experiment requirements acquired, stored in a
database, and analyzed will improve the
integration process within the Space Station
program. Work is underway to identify
which portions of the data are carrier
independent.

The requirements database is expected to
assist in experiment reflights aboard Spacelab
where the bulk of the requirements for an
experiment do not change. Tools such as
these may also be used to assist mission
designers in selecting payloads based on
mission characteristics. For example, if a

microgravity mission is being considered,
designers might access the requirements
database to identify candidate experiments,
and then use the list of candidates to construct

optimum payload configurations.

We mentioned earlier that one of the

expected benefits of these systems was to use
them as training tools. While the systems as
currently implemented have no tutoring
capabilities, engineers using them can gain a
better understanding of their domain. One
enhancement in future versions might be to
employ tutoring strategies so that the system
could be used as a teaching tool.

CONCLUSION

The PUPED acquisition system described
in this paper is planned for use on the WISP-
HF/ATLAS-4 mission. WISP (a Canadian

experiment) represents the first totally new
experiment planned for Spacelab.

Portions of the CDMS analysis tool are
currently being used by the integration team
on several missions and benefits are already

being realized. Maintenance of the CDMS
data and the expansion of requirements
definitions are much easier in the automated

system, and the system has already identified
a number of errors in CDMS data for

missions under development.

One problem encountered during the
development of the analysis tool was no
access to a network server version of Oracle

within TBE. All development had been done
on a Macintosh using a "stand alone" Oracle.
The CDMS table structures had been defined

and populated with existing mission data.
However; the availability of the data was
limited to the single development machine and
not easily accessed by other members of the
integration team. A work-around solution to
this problem was to use a PC database
(FileMaker Pro) to store and manipulate
CDMS requirements data. The expert system
reads data exported from FileMaker and
performs analyses and validity checks. We
expect to transfer the data from FileMaker
files to Oracle when the networked Oracle
server hardware and software is installed.

In addition to CDMS, TBE has efforts

underway to use expert Systems in several
other areas of the payload integration process.
One effort worth noting is the Functional
Objectives Requirements Collection System
(FORCS) which will be used to help PIs
define functional objectives for their
experiment. The current FO process suffers
from many of the same problems as CDMS
including the task of entering paper inputs
from the PI, inconsistency in the way those
requirements are stated, multiple (often

inconsistent) copies of the data spread across
disciplines, etc. The FO Expert System and
the CDMS acquisition system are both parts
of a larger effort to automate the acquisition of
all experiment requirements and to store those
requirements in a relational database for
analysis and integration. The lessons learned
in both these efforts will be applied to other

178

.proble.ms within the mission payload
mtegrauon process.

Clancey, William J.(1988). "The Knowledge
Engineer as Student: Metacognitive Bases
for Asking Good Questions" in
Issues for Intelligent Tutoring Systems,
Springer Verlag

Craig. F.G., Cutts, D.E., Fennel, T.R. &
Purves, B. (1990). "Graphical Explanation
in an Expert System for Space Station
Freedom Rack Integration", Fifth Conference
on Artificial Intelligence for Space
Applications, Huntsville AL, May

Doyle, John (1981). "A Truth Maintenance
System" in Readings in Artificial
Intelligence, pp 496-516 (Tioga Publ Co.
1981)

Fennel T.R. & Johannes, J. D. (1990). "An
Architecture for Rule Based System
Explanation" Fifth Conference on Artificial
Intelligence for Space Applications,
Huntsville AL, May 1990.

Gaines, B.R.(1989) "Integration issues in

Knowledge Support Systems" in
International Journal of Man-Machine
Studies (1989) 31:5

Gruber, Thomas & Cohen, Paul (1987).
"Principles of Design for Knowledge
Acquisition" in Proceedings of 3rd IEEE
Conference on AI Applications (1987)

Kitto, Catherine M. & Boose, John H.
(1989). "Selecting Knowledge Acquisition
Tools & Strategies based on Application
Characteristics" in International Journal of

Man-Machine Studies (1989) 31:8

MDC (1991). MDC G6854D Volume II,
Appendix D, CDMS Forms and Instructions

Swigger, Kathleen M.(1989). "Managing
Communication Knowledge" in Proceedings
of the Second Intelligent Tutoring Systems

Research Forum, San Antonio, TX (April
1989)

Wexelblat, Richard L. (1989). "On Interface

Requirements for Expert Systems" in AI
MAGAZINE 10:3 (Fall 89)

179

N92-23371

Knowledge-Based Approach for Generating Target System /9

Specifications from a Domain Model (/["

Hassan Gomaa, Larry Kerschberg, and Vijayan Sugumaran

Center for Software Systems Engineering
Depamnent of Information and Software Systems Engineering

George Mason University
Fairfax, Virginia 22030-4444

Abstract

i

have to perform a full systems analysis every c
time a new target system has to be constructed.

Several institutions in industry and academia
are pursuing research efforts in domain
modeling to address unresolved issues in
software reuse. To demonstrate the concepts
of domain modeling and software reuse, a
prototype software engineering environment is
being developed at George Mason University
to support the creation of domain models and
the generation of target system specifications.
This prototype environment, which is applica-
tion domain independent, consists of an inte-
grated set of commercial off-the-shelf software
tools and custom-developed software tools.
This paper describes the knowledge-based tool
that has been developed as part of the environ-
ment to generate target system specifications
from a domain model.

Keywords: domain modeling, reuse, soft-
ware engineering environments, object reposi-
tory, requirements elicitation, knowledge-based
tool support.

INTRODUCTION

An application domain is defined to be a
collection of systems that share common char-
acteristics. A domain model is used to capture
common characteristics and variations among a
family of software systems in a given applica-
tion domain. From the domain model, a target
system can be generated by tailoring the
domain model according to the requirements of
the target system. Thus, a target system engi-
neer can develop the specification for a target
system in terms of the domain model specified
previously by a domain analyst, and does not

At George Mason University, a project is
underway to support software engineering life-
cycles, methods, and prototyping environments
to support software reuse at the requirements
and design phases of the software lifecycle, in
addition to the coding phase. A reuse-oriented
software lifecycle, the Evolutionary Domain
Lifecycle (Gomaa, 1989; Gomaa, 1991a) has
been proposed, which is a highly iterative life-
cycle that takes an application domain perspec-
tive allowing the development of families of
systems. A domain analysis and modeling
method has also been developed (Gomaa,
1990). This paper describes a knowledge-
based approach for generating target system
specifications from a domain model.

DOMAIN ANALYSIS AND MODELING

The Evolutionary Domain Life Cycle (EDLC)
Model (Gomaa, 1989) is a software lifecycle
model that eliminates the traditional distinction

between software development and
maintenance. Instead, systems evolve through
several iterations. Hence, systems developed
using this approach need to be capable of
adapting to changes in requirements during
each iteration. Furthermore, because new
software systems axe often outgrowths of exist-
ing ones, the EDLC model takes an application
domain perspective allowing the development
of families of systems.

Parnas referred to a collection of systems
that share common characteristics as a family of
systems (Parnas, 1979). According to Parnas,
it is worth considering a family of systems

PRECEDii',ff.I PAGE BLANK NOT FILMED

it/

when there is more to be gained by analyzing
the systems collectively rather than separately,
i.e., the systems have more features in com-
mon than features that distinguish them. The
concept of viewing an application domain as
consisting of a family of systems has been
adopted by various researchers (Batory, 1989;
Kang, 1990; Pyster, 1990; Lubars, 1989).

When considering the development of a
family of systems, it is necessary to replace the
traditional system development activities of
Requirements Analysis, Requirements
Specification, and System Design with activi-
ties that span the entire application domain.
These are Domain Analysis, Domain
Specification, and Domain Design.

A Domain Model is a problem-oriented ar-
chitecture for the application domain that re-
flects the similarities and variations of the

members of the domain (Gomaa 1992). Given
a domain model of an application domain, an
individual target system (one of the members of
the family) is created by tailoring the domain
model according to the requirements of the in-
dividual system.

A Domain Model is initially created by
means of a Domain Analysis. Domain
Analysis (Prieto-Diaz, 1987) is a requirements
analysis of a family of systems for a domain,
rather than of a given target system. A domain
analysis must address the requirements of the
family of current systems as well as anticipate
future changes. Although some future changes •
may be anticipated, it is unlikely that all future
changes can be anticipated. It is therefore nec-
essary for the Domain Model to be evolution-
ary. It needs to be capable of evolving as new
(i.e., unanticipated) requirements are added and
as existing requirements are changed in •
unanticipated ways. Domain Analysis is
comparable to a systems analysis performed on
a broader scale. It involves the analysis of
existing target systems in the application
domain as well as interviewing domain experts
and capturing their knowledge of existing
features, including known or anticipated
variations in the domain. *

Reuse is an important goal in domain
modeling. A key aspect of this work is the
way it combines generation technology with

composition technology. Reuse by generation
(Biggerstaff, 1987) implies a top-down ap-
proach in which a target system is generated
from a domain model by tailoring the domain
model according to the target system require-
ments. Reuse by composition (Biggerstaff,
1987) is a bottom-up approach in which com-
ponents residing in a reuse library are located
and reused, ideally without change. Instead of
requiring software developers to search large
reuse libraries, the domain model has an index
into the reuse library, so that reusable software
components may be more easily located and
included in the target system implementation.

Multiple Views of Domain Model

Applying the domain modeling method, the
application domain is modeled by means of the
following views:

Aggregation Hierarchy. The Aggregation
Hierarchy is used to decompose complex,
aggregate object types into less complex
object types, eventually leading to simple
object types at the leaves of the hierarchy.

Object Communication Diagrams. Objects
in the real world are modeled as concurrent

processes that communicate with each other
using messages. The object communication
diagrams, which are hierarchically struc-
tured, show how objects communicate with
each other.

State Transition Diagrams. Because each
active object is modeled as a sequential
process, it may be defined by means of a
finite state machine and documented using a
state transition diagram.

Generalization / Specialization Hierarchies.

As the requirements of a given object type
are changed to meet the needs of a given tar-
get system, the object type may be special-
ized by adding, modifying, or suppressing
operations. The variants of a domain object
type are stored in this hierarchy.

Feature / Object Dependencies. This view
shows for each feature (domain requirement)
the object types required to support the
feature.

The domain modeling method has been applied
to developing a domain model for NASA's
Payload Operations Control Center (POCC)
Domain.

PROTOTYPE SOFTWARE

ENGINEERING ENVIRONMENT

A prototype software engineering environment
is being developed, which consists of an

integrated set of software tools that support
domain modeling and the generation of target
system specifications. A schematic representa-
tion of the prototype environment is given in
Figure 1. In order to expedite development of
the prototype, the environment uses commer-
cial off-the-shelf software as well as custom

software. We are using Interactive
Development Environments' Software Through
Pictures CASE tool to represent the multiple
views of the domain model, although semanti-
cally interpreting the views according to the
domain modeling method. The information in

Multiple Views of Domain SPIN:

object
Repository

the multiple views is extracted, checked for

consistency, and mapped to an underlying rep-
resentation, referred to as the domain specifica-
tion, which is stored in an object repository
(Gomaa, 1991 b).

The domain specification stored in the ob-
ject repository is augmented with domain fea-

tures (requirements), inter-feature dependencies
and feature/object dependencies. Inter-feature
dependencies capture the relationships among
features. For example, a feature may require
the presence of some other feature(s). Another

example of inter-feature dependency is that
some features may be mutually exclusive or
mutually inclusive. The feature/object depen-
dencies relate features to objects, i.e., they
define the object types required to support a
particular feature. The domain analyst provides
this feature-related information using the
Feature Object Editor. Feature/object depen-
dencies are stored in the object repository.

Multiple Views of
Tin'Set Syltem Spec

Figure 1. Prototype Domain Modeling Environment

183

The object repository interfaces with
knowledge-based tools and provides the infor-
mal and formal specifications for reuse. Thus,
the object repository provides a consistent
domain model specification which can be ac-

cessed by various tools.

Once domain modeling is completed, the
domain specification serves as the framework
for generating target systems. The process of
generating target systems from a domain model
can be significantly improved with knowledge-
based tool support. This tool not only must
have knowledge about the domain model, but
also must contain procedural knowledge about

constructing target systems. A knowledge-
based system called the Knowledge-Based
Requirements Elicitation Tool (KBRET) is
being developed to automate the process of
generating the specifications for target systems.
KBRET is used to assist with target system re-
quirements elicitation and generation of the
target system specification. This tool is imple-
mented in the expert system shell CLIPS (C
Language Integrated Production System), de-
veloped at NASA/Johnson Space Center
(Giarratano, 1991). It conducts a dialog with
the human target system requirements engineer,
prompting the engineer for target system
specific information. The course of the dialog
is determined by the responses provided by the
target system engineer. The output of this tool
is used to adapt the domain model to generate
the target system specification. When the target

system objects have been assembled, the
corresponding multiple views are derived by
tailoring the multiple views of the domain
model. The multiple views of the target system
are then displayed using Software through
Pictures.

The prototype software engineering envi-
ronment is a domain-independent environment.
Thus it may be used to support the develop-
ment of a domain model for any application
domain that has been analyzed, and to generate

target system specifications from it.

KNOWLEDGE-BASED REQUIREMENTS
ELICITATION TOOL (KBRET)

A target system specification is derived from
the domain model by tailoring it according to
the requirements specified for the target sys-

tern. The process of generating a target system
specification consists of gathering the require-
ments in terms of domain features, retrieving
from the domain model the corresponding

components to support those features, and rea-
soning about inter-feature and feature/object
dependencies to ensure consistency. The
Knowledge-Based Requirements Elicitation
Tool (KBRET) facilitates the process of gen-
erating target system specifications from a
domain model with multiple viewpoints.

The architecture of KBRET consists of two

types of knowledge: domain-independent and
domain-dependent knowledge. The domain-
independent knowledge provides control
knowledge for the various functions supported
by KBRET. These functions include a
browser, a feature selector, a dependency
checker, and a target system generator. The
domain-dependent knowledge represents the
multiple views of an application domain model,
including the feature/object dependencies. This
knowledge is derived from the object reposi-
tory through the KBRET Object Repository
interface and structured as CLIPS facts

(Sugumaran, 1991). The various components
of KBRET are diagrammatically depicted in

Figure 2.

The separation of domain-independent and
domain-dependent knowledge is essential for
providing scale-up and maintainability of
domain specifications for large domains. Also,
since the domain-independent knowledge is
independent of the application domain, it can be
used with domain-dependent knowledge from
any application domain to generate target sys-
tem specifications in that domain.

Domain Independent Knowledge

The domain-independent knowledge sources
provide procedural and control knowledge for
the various functions supported by KBRET.
The Dialog Manager is responsible for carrying
out a meaningful dialog with the target system
engineer and eliciting the requirements for the
target system. It addresses such issues as
how, and in what sequence, the target system
engineer should be prompted for various
features, invoking and controlling the different
phases of KBRET, the user interface, etc.

184

KBREF

KBRET Knowledge
Sources

TargetSystemg_tu_. _

DomainIndependent KnowledgeSom'oe,s

' D°nmin "Fe_me_Obje_ "_ 11 Targe_System [

CLIPS
_ Infe_e

t fT' 1L KBRET-ObjectRepository System
lntcrfsoe _ Specification

ObjectRepository

Figure 2. Knowledge Based Requirements Elicitation Tool (KBRET)

Before specifying the requirements for the
target system, the target system engineer may
wish to browse through portions of the domain
model in order to gain understanding of the
application domain under consideration. The
Domain Browser knowledge source provides
this facility. It provides rules for initiating and
terminating the browsing facility and for
accessing the appropriate domain-dependent
knowledge sources.

The Feature & Object Selection/Deletion

knowledge source keeps track of the selection
or deletion of features for the target system and
the corresponding object types. This knowl-
edge source incorporates rules for selecting and
deleting features and for invoking the appro-
priate rules for checking inter-feature and
feature/object dependencies.

The Dependency Checker knowledge
source cooperates with the Feature & Object
Selection/Deletion knowledge source. When a

particular feature is selected for the target sys-
tem, the Dependency Checker enforces the
inter-feature and feature/object dependencies
for that feature. These dependencies are ob-
tained from the Inter-Feature & Feature- Object

Dependencies knowledge source, which is
domain dependent, as shown in Figure 2.
When a feature with some prerequisite features
fs selected, the Dependency Checker ensures
that those prerequisite features are included in
the target system. For example, in the POCC
domain, the Verifying Real Time Commands
feature requires the Sending Real Time
Commands feature. If the Sending Real Time
Commands feature is not selected and the

185

Verifying Real Time Commands feature is de-
sired in the target system, the Sending Real
Time Commands feature will be included in the

target system before selecting the Verifying
Real Time Commands feature.

Similarly, before deleting a feature from the
target system, dependency checking is per-
formed to ensure that it is not required by any
other target system feature. Using the example
from the previous paragraph, if both Sending
Real Time Commands and Verifying Real Time
Commands features are selected for the target
system, the Sending Real Time Commands
feature cannot be deleted from the target system
as long as the Verifying Real Time Commands
feature is selected for the target system. Thus,
the Dependency Checker knowledge source has
rules to enforce the inter-feature and

feature/object dependencies so that a consistent
target system is specified.

Once the feature selection for the target
system is complete, the Target System
Generator knowledge source begins the pro-
cess of assembling the target system. The
domain kernel object types are automatically
included in the target system. Depending upon
the features selected for the target system, the
corresponding variant and optional object types
are included according to the feature/object de-
pendencies. The Target System Generator
would detect if more than one variant

(specialization) of a particular kernel or optional
object type were included in the target system.
These multiple variant object types have to be
"integrated" to produce one integrated variant
object type that would support the desired fea-
tures in the target system. Some domains may
require the presence of multiple variants of
certain objects, and those variant objects should
not be integrated. For example, in the POCC
domain, multiple variants of observatory-re-
lated objects should not be integrated.

If multiple specializations of a particular
kernel or optional object have been selected,

and if they have to be integrated, the Target
System Generator will access the Multiple
Views domain-dependent knowledge source
and check the appropriate generaliza-
tion/specialization hierarchy to see if an inte-
grated object type for those variant object types
exists as a result of previous variant integration

processes. If such an integrated object type is
present, then that object type is included in the
target system in lieu of those variant object
types to be integrated. Once all the required
integrated variant object types have been in-
cluded, the target system generation is com-
plete.

If an integrated variant object type is not in
the domain model, the target system generation
process is suspended until the domain analyst
can specify the integrated variant and include it
in the domain model. At that time the target
system generation process can be reactivated to
complete the specification of the target system.

Variant integration is a non-trivial task and
may require considerable domain knowledge.
Hence, completely automating the variant inte-
gration process will be a tremendous challenge.

Domain Dependent Knowledge

The domain-dependent knowledge sources
contain specific information about a particular
application domain. They are used by the do-
main-independent knowledge sources of
KBRET in eliciting the requirements and gen-
erating the target system specification. The
domain-dependent knowledge sources are
derived from the domain specification, which is
persistently stored in the object repository. The
KBRET Object Repository Interface accesses
the object repository and creates these knowl-
edge sources using a representation that is
compatible with the other knowledge sources
of KBRET.

The Features and Object Types knowledge
source contains a list of all the object types and
features that have been incorporated in the
domain model. For each object type, its name
and properties are stored in this knowledge
source. The properties of objects are: kernel,
optional, variant, aggregate, agh_root, and
gsh_root. The CLIPS implementation of this
knowledge source is essentially a list of facts
-- one fact for each object type and its proper-
ties and one fact for each feature.

The various relationships and dependencies
among features and between features and object
types are captured in the Inter-Feature &
Feature-Object Dependencies knowledge

186

source. Theprerequisite relationship between
two features is captured in a CLIPS fact with
the key word "requires". For each feature, the
object types required to support that feature are
expressed as CLIPS facts using the key word
"supported-by". These dependencies are en-
forced during feature selection or deletion by
the Dependency Checker knowledge source.

The Multiple Views knowledge source
contains the different views created using the
EDLC methodology, in particular, the aggrega-
tion hierarchy and the generalization/special-
ization hierarchies. These hierarchies are ac-

cessed and utilized by the Target System
Generator knowledge source when the target
system is being assembled. The parent-child
relationship between objects in the aggregation
hierarchy is expressed as CLIPS facts using the
key word "is-part-of". The supertype-subtype
relation between objects in the generaliza-
tion/specialization hierarchy is expressed as
CLIPS facts with the "is-a" key word.

GENERATION OF TARGET SYSTEM
SPECIFICATION

To generate the target system specification,
KBRET enters into a dialog with the target
system engineer and elicits the requirements for
the target system. A sample dialog, in which a
domain model for the Payload Operations
Control Center (POCC) application domain is
used to generate a target system specification,
is given in the Appendix.

At the start of the dialog, KBRET prints the
system banner and asks the target system engi-
neer whether he/she wishes to browse the

domain model or would like to specify the re-
quirements for the target system, as shown in
the sample dialog in the Appendix. If the re-
sponse is to browse, the browsing phase is ini-
tiated. The target system engineer can explore
the domain model and get explanations for the
different features incorporated in the domain
model. Once sufficient familiarity with the
domain model has been gained, the target
system requirements specification phase may
be initiated.

The target system engineer is presented
with the various features captured in the
domain model in the form of a menu, as shown

in the Appendix, and the features desired in the
target system can be selected from this menu.
Whenever a feature is selected for the target
system, the dependency checking phase is ini-
tiated, and the inter-feature and feature/object
dependencies are checked and enforced. If a
particular feature, say "F", requires the pres-
ence of other features, and they are not selected
for the target system, the target system engineer
is informed of that fact, and those features are

automatically included in the target system in
order to support feature "F".

An example of this feature dependency
checking is shown in the sample dialog in the

Appendix. When the target system engineer
trtes to select the Verifying Real Time
Commands (feature 7), KBRET responds with
a message saying that Verifying Real Time
Commands requires Sending Real Time
Commands feature and it will be automatically
included in the target system, and requests the
target system engineer's confirmation. When
the target system engineer types "y" to confirm
the selection, KBRET includes both the

Sending Real Time Commands feature and the
Verifying Real Time Commands feature in the
target system and displays a message to that ef-
fect, as shown in the Appendix.

When a feature is selected for the target
system, the object types that are required to
support that feature are also selected in accor-
dance with the feature/object dependencies and
the CLIPS fact-base is updated to reflect that
fact. The target system engineer, thus, can
specify the requirements for the target system,
and the Feature & Object Selection�Deletion
knowledge source asserts new facts into the
fact-base to record those selections. Of course,
the Dependency Checker would ensure that the
inter-feature and feature/object dependencies
have not been violated.

The target system engineer can also delete
features that have been selected for the target
system. If a feature, say "F", is to be deleted,
the Dependency Checker will check the fact-
base to see if any of the features selected for the
target system require that feature "F". If so,
the deletion of feature "F" is disabled. An ex-

ample of this deletion dependency checking is
shown in the sample dialog. When the target
system engineer tries to delete the Sending Real

187

Time Commands (feature 6) from the target
system, KBRET responds with a message
saying that the Sending Real Time Commands
feature is required by the Verifying Real Time
Commands feature and since Verifying Real
Time Commands feature is currently selected
for the target system, the Sending Real Time
Commands feature cannot be deleted, and the

dialog continues. When a feature "F" is
deleted, it may cause the deletion of some other
features if those features were included in the

target system solely because of the selection of
feature "F" and if they are not required by any
other feature selected for the target system.
The deletion of a feature also triggers the dele-
tion of object types that were included to sup-
port that feature.

If the target system engineer would like to
specify a feature that has not been captured in
the domain model, the requirements elicitation
phase is suspended and the domain analyst is
called upon to model that requirement and en-
hance the domain model. Then, the target sys-
tem specification and generation may be re-
sumed.

Once the requirements for the target system
have been completely specified, the target sys-
tem generation phase is invoked. KBRET
prompts for a name for the target system that is
being generated so that it may be stored in the
object repository for reuse. The fact-base is
examined and the features and the object types
selected for the target system are gathered.
KBRET then presents the list of features that
have been selected for the target system. The
kernel object types are included in the target
system because they must be part of every
member of the family of systems. The selected
variant and optional object types are examined
to see if variant integration is required. If vari-
ant integration is not required, then the target
system specification is generated and presented
to the target system engineer.

In presenting the target system specifica-
tion, KBRET provides two options. The target
system engineer may view only the leaf-level
object types or he/she can view both the aggre-
gate and leaf-level object types. If the target
system engineer chooses the second option,
KBRET provides the aggregation hierarchy for
the target system, as shown in the Appendix.

This is accomplished by pruning the domain
aggregation hierarchy, i.e., deleting from the
domain aggregation hierarchy the object types
that have not been included in the target sys-
tem. KBRET presents the target system aggre-
gation hierarchy in an indented form, as shown
in the Appendix, to reflect the various levels of
the aggregation hierarchy.

KBRET also outputs two files containing
the target system information. These files are
used to tailor the domain model graphical views
and generate a set of graphical views for the
target system. The target system views differ
from those of the domain model in two ways.
First, the optional objects that are not selected
for the target system are removed. Secondly,
in the case where one or more variants of a

domain object type are selected, the object type
is replaced by its variant(s).

If variant integration is required, the
domain analyst is called upon to perform vari-
ant integration. When the integration process is
completed, the target system generation phase
is resumed and the target system specification
is generated and presented to the target system
engineer.

SUMMARY

This paper has discussed the domain modeling
approach to software reuse and presented a
prototype environment that supports domain
modeling and generation of target system
specifications. The architecture of the
knowledge-based tool, KBRET, along with its
domain-dependent and domain-independent
knowledge sources was described. Finally, the
paper has discussed KBRET's approach to
generating target system specifications from the
domain model, by eliciting the requirements for
the target system and tailoring the domain
model. A sample dialog with KBRET was also
presented.

Future work includes extending KBRET to
provide the capability to generate target system
specifications from existing related target
system specifications in conjunction with the
domain model, and also to improve KBRET's
user interface.

ACKNOWLEDGEMENTS

We gratefully acknowledge the assistance
of S. Bailin, R. Dutilly, J. M. Moore, and W.
Truszkowski in providing us with information
on the POCC. We gratefully acknowledge the
major contributions of Liz O'Hara-Schettino in
developing the domain model of the POCC,
and C. Bosch and I. Tavakoli for their major
contributions to the prototype software engi-
neering environment. This work was spon-
sored primarily by NASA Goddard Space
Flight Center Automated Technology Branch
Code 522.3 under the Code R research

program, with support from the Virginia Center
of Innovative Technology. The Software
Through Pictures CASE tool was donated to
GMU by Interactive Development
Environments (IDE).

REFERENCES

Batory, D. (1989). The Genesis Database
System Compiler: A Result of Domain
Modeling. Proc. Workshop on Domain
Modeling for Software Eng., OOPSLA'89,
New Orleans, LA.

Biggerstaff, T., Richter, C. (1987).
Reusability Framework, Assessment, and
Directions. IEEE Software, March 1987.

Giarratano, J.C. (1991). Clips User's Guide,
Version 5.0, Software Technology Branch,
Lyndon B. Johnson Space Center, Houston,
TX.

Gomaa, H. (1990). A Domain Analysis and
Specification Method for Software Reuse.
Proc. Third Annual Workshop on Methods
and Tools for Reuse, Syracuse, NY.

Gomaa, H. (1992). An Object-Oriented
Domain Analysis and Modeling Method for
Software Reuse. Proc. Hawaii International

Conference on System Sciences, Hawaii.

Gomaa, H., & Kerschberg, L. (1991a). An
Evolutionary Domain Life Cycle Model for
Domain Modeling and Target System
Generation. Proc. Workshop on Domain
Modeling for Software Engineering, Int.
Conf. on Software Engineering, Austin, TX.

Gomaa, H., Fairley, R., and Kerschberg, L.
(1989). Towards an Evolutionary Domain
Life Cycle Model. Proc. Workshop on
Domain Modeling for Software Eng.,
OOPSLA, New Orleans, LA.

Gomaa, H., Kerschberg, L., Bosch, C.,
Sugumaran, V., and Tavakoli, I. (1991b). A
Prototype Software Engineering Environment
for Domain Modeling and Reuse. Proc.
Fourth Annual Workshop on Methods and
Tools for Reuse. Herndon, VA.

Kang, K. C. et. al. (1990). Feature-Oriented
Domain Analysis. Technical Report No.
CMU/SEI-90-TR-21, Software Engineering
Institute.

Lubars, M. D. (1989). Domain Analysis for

Multiple Target Systems. Proc. Workshop on
Domain Modeling for Software Eng.,
OOPSLA'89, New Orleans, LA.

Parnas, D. (1979). Designing Software for
Ease of Extension and Contraction. IEEE

Transactions on Software Eng., Vol. 5 No.
2, pp. 128-137.

Prieto-Diaz, R. (1987). Domain Analysis for
Reusability. Proc. of COMPSAC'87.

Pyster, A. (1990). The Synthesis Process for
Software Development. In R. Thayer and M.
Dorfman (Eds.). System and Software
Requirements Engineering, New York:IEEE

Computer Society Press.

Sugumaran, V., Gomaa, H., and Kerschberg,
L. (1991). Generating Target System
Specifications from a Domain Model Using
CLIPS. Proc. of Second Annual Clips
Conference, Houston, TX.

189

Appendix. Sample Dialog with KBRET for the POCC domain.

* KNOWLEDGE BASED REQUIREMENTS ELICITATION TOOL *
* (KBRET) *

Requirements El*citation for POC_ domain

You may browse the features in_ in the Domain Model, specify the requirements for the
Target System or quit KBRET.

Choices Perform

1 Browse the Domain Model

2 Specify requirements for Target System
3 Quit KBRET

Please type your choice and hit return: 1

Domain Model Browsing Phase

Please select one of the following choices to continue.
Choices Perform

1 Explore the Features
2 ExitBrowsing Phase
3 Quit KBRET

Please type your selection and hit return: 1

Feature Exploration

For the description of a feature, please type its number.
Choices

1
2
3
4
5
6
7
e

Please type your

Feature to be described
llllliilli**i_lii_

Mission Type One
Mission Type Two
Experiment Type One
Experiment Type Two
Data Collection of Simulated Telemetry
Sending Real Time Commands
Verifying Real Time Commands
Exit Browsing Phase

selection and hit return: 5

Data Collection of Simulated Telemetry:

Simulated Telemetry Data can be collectedand analyzed.

Choices
Ill*ill

1
2
3
4
5
6
7

Feature to be described

Mission Type One
Mission Type Two
Experiment Type One
Experiment Type Two
Data Collection of Simulated Telemetry
Sending Real Time Commands
Verifying Real Time Commands

190

e ExitBrowsingPhase
Pleasetypeyourselectionandhitreturn: e

Exiting the Browsing Phase

You may browse the featmes incorporated in the Domain Model, or specify the requirements for the
Target System or quit KBRET.

Choices Perform

1 Browse the Domain Model

2 Specify requirements for Target System
3 Quit KBRET

Please type your choice and hit return: 2

Target System Requirements Elicitation Phase

Now, you win be presentedwith the features incorporated in the Domain Model. If a feature is desired in the

target system, please type its number and hit return. Please select one of the following choices to continue.
Choices Feature to be selected

1 Mission Type One
2 Mission Type Two
3 Experiment Type One
4 Experiment Type Two

5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End selecting features

Please type your selection and hit return: 2

The Mission Type Two Feature has been selected for the Target System.

Please select one of the following choices to continue.
Choices Feature to be selected

3 Experiment Type One
4 Experiment Type Two
5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End selecting features

Please type your selection and hit return: 3

The Experiment Type One Feature has been selected for the Target System.

Please select one of the following choices to continue.
Choices Feature to be selected

4 Experiment Type Two
5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End selecting feattwes

Please type your selection and hit return: 4

The Experiment Type Two Feature has been selected for the Target System.

191

Please select one of the following choices to continue.
Choices Feature to be selected

5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands

e End selecting features
Please type your selection and hit return: 7

The Verifying Real Time Commands Feature requires Sending Real Time Commands Feature.
The Sending Real Time Commands Feature will be automatically included if the Verifying Real
Time Commands Feature is desired.

Please type 'y' to include or 'n' to not include the Sending Real Time Commands Feature. (y/n): y
The Sending Real Time Commands Feature has been selected for the Target System.
The Verifying Real Time Commands Feature has been selected for the Target System.

Please select one of the following choices to continue.
Choices Feature to be selected

5 Data Collection of Simulated Telemetry
e End selecting features

Please type your selection and hit return: e

Target System feature selection has been exited...

The following features are currently selected:

Number

2
3
4
6
7

Feature Name

Mission Type Two
Experiment Type One
Experiment Type Two
Sending Real Time Commands
Verifying Real Time Commands

Please select one of the following choices to continue.
Choices Perform

1 Select more features for Target System
2 Delete a feature from Target System
3 Specify features not in the Domain Model
4 Initiate Target System Generation Phase
5 Quit KBRET

Please type your selection and hit return: 2

Please select one of the following choices to continue.
Choices Feature to be deleted

2 Mission Type Two
3 Experiment Type One

4 Experiment Type Two
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End deleting features

Please type your selection and hit return: 6

Since the Sending Real Time Commands Feature is required by the Verifying Real Time Commands
Feature and since the Verifying Real Time Commands Feature is currently desired in the Target System, the
Sending Real Time Commands Feature may not be deleted now.

192

Pleasetype(c)andhitreturntocontinue:c

Pleaseselectoneofthefollowingchoicestocontinue.
Choices Featuretobedeleted

2 MissionTypeTwo
3 ExperimentTypeOne
4 ExperimentTypeTwo
6 SendingRealTimeCommands
7 VerifyingRealTimeCommands
e End deleting features

Please type your selection and hit return: 3
Since Experiment Type One Feature is not required by any other target system feature, it will be deleted
from the Target System Features.

Please type 'y' to delete or 'n' to abort the deletion of Experiment Type One Feature (y/n) : y
The Experiment Type One Feature has been deleted from the Target System.

Please select one of the following choices to continue.
Choices Feature to be deleted
******* *****************

2 Mission Type Two
4 Experiment Type Two
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End deleting features

Please type your selection and hit return: e

Target System feature deletion has been exited...

The following features are currently selected:
*********** iIJ***********************

Number

2
4
6
7

Feature Name

Mission Type Two
Experiment Type Two
Sending Real Time Commands
Verifying Real Time Commands

Please select one of the following choices to continue.
Choices Perform

1 Select more features for Target System
2 Delete a feature from Target System
3 Specify features not in the Domain Model
4 Initiate Target System Generation Phase
5 Quit KBRET

Please type your selection and hit return: 4
Invoking the Target System Generation Phase

Target System Generation Phase:

Please input a name for the Target System: EXAMPLE

EXAMPLE Targ_ Sys_m Componen_

The fo_owing features have been selected for the EXAMPLE Targ_ Sys_m

Mission Type Two Feature

193

ExperimentTypeTwoFeature
SendingRealTimeCommands Feautre
Verifying Real Time Commands Feature

Assembling the EXAMPLE Target System. Please Wait

The Target System Object Types have been assembled. To view those object types included in the Target
System, Please select one of the following choices:

Choices Perform

1 View Leaf Level Object Types
2 View Aggregate and Leaf Level Object Types

Please type your selection and hit return: 2

The Aggregate and Leaf Level Objects of the Target System:

Payload Operations Control Center Domain (kernel aggregate)
Telemetry (kernel aggregate)

Telemetry PreProcessor (kernel)
Spacecraft Telemetry Processor (kernel aggregate)

Mission Two SC Eng. Telemelry Analog Limits Checker With Eqn. Processing (variant)
Mission Two SC Engineering Telemetry Trend Analyzer (variant)
Mission Two SC Engineering Telemetry Equation Processor (variant)
Mission Two Discrete SC Engineering Telemetry Analyzer (variant)
Mission Two FDF Interface (variant)

Observatory Telemetry Processor (kernel aggregate)
Experiment Two Instrument Telemetry Analog Limits Checker (variant)
Experiment Two Inslrument Telemetry Trend Analyzer (variant)
Experiment Two Discrete Instrument Telemetry Analyzer (variant)
Experiment Two Scientific Telemetry Analyzer (variant)

TAC Interface (kernel)
RUPS Interface (kernel)

Command (kernel aggregate)
Command Load Processor (kernel aggregate)

Satellite Bound Command Load Processor (kernel)
Earth Bound Command Load Verifier (kernel)

Command Load Data Store (kernel)
OBC Image Verifier (kernel)
CMS Interface (kernel)

Real Time Command Processor (optional aggregate)
Satellite Bound Real-Time Command Processor (optional)
Earth Bound Real-Time Command Verifier (optional)

Real-Time Command Data Store (optional)
Satellite Bound Command Problem Resolver (optional)

Flight Operations Analyst (kernel aggregate)
bOA STOL Interface (kernel)
POCC Mode Selector (kernel)
bOA Command Processor (kernel)
bOA NCC Processor (kernel)
FOA Telemetry Processor (kernel)
NCC Interface (kernel)

History (kernel aggregate)
Telemetry History (kernel)
Command History (kernel)
Flight Operations Analyst History (kernel)
Telemetry Block History (kernel)

The EXAMPLE Target System Generation is complete. The object types shown above have been included in it

and no variant integration is required.

194

N92-23372

Combining Factual and Heuristic Knowledge in Knowledge

Acquisition*

Fernando Gomez, Richard Hull, Clark Karr

Department of Computer Science

University of Central Florida

Orlando, Fl 32816

gomez_cs.ucf.edu (407) 823-2764

Bruce Hosken, William Verhagen
Grumman

i f"

Abstract

A knowledge acquisition technique that

combines heuristic and factual knowledge rep-
resented as two hierarchies is described. These

ideas have been applied to the construc-

tion of a knowledge acquisition interface to

OPERA (Expert System Analyst). The goal

of OPERA is to improve the operations sup-

port of the computer network in the space

shuttle launch processing system. The knowl-

edge acquisition bottleneck lies in gathering

knowledge from human experts and transfer-

ring it to OPERA. OPERA's knowledge acqui-

sition problem is approached as a classification

problem-solving task, combining this approach

with the use of factual knowledge about the

domain. The interface has been implemented

in a Symbolics workstation making heavy use

of windows, pull-down menus, and other user-

friendly devices.

1 Introduction

The goal of OPERA (Expert System Ana-

lyst; Adler, 1989) is to improve the operations

support of the computer network in the space

shutt/l_launch processing system. The check-
out,:control_nd monitor subsystem (CCMS)

:\ ,

?This research m being funded by NASA-KSC Con-
tract NAG- 10-0058 _

195

is a distributed computer network, which in-

tegrates software, microcode, display switches
and hardware interface devices. OPERA is

intended to function as a consultant to the

operations staff assigned to each CCMS task.

Two basic expert systems form OPERA: the

Real Time System Error Manager (RTSEM)

and the Problem Impact Analyst (PIA). When

an error occurs, RTSEM displays information
on this error obtained from a data base of

errors. This information, although based on

the CCMS message catalog information, con-

tains experiential knowledge that "resides in

the head of the human experts, not in texts."

The knowledge acquisition bottleneck that the

designers of OPERA are presently experienc-

ing is in gathering this knowledge from the hu-

man experts and transfering it to OPERA in
a form assimilable by the data structures and

algorithms of the expert system. OPERA con-

talns about one hundred thirty of these errors,
but the actual number of errors in the com-

puter network is greater than one thousand.

Hence, OPERA is short in its knowledge base

by a factor of ten. The goal of this project

is to build a knowledge acquisition interface

by means of which a domain expert without

knowledge of OPERA or expert systems will

be able to transfer his/her knowledge about

the computer network errors to OPERA.

OPERA is not a diagnostic expert system

whose task is to identify or recognize a prob-

lem or error from a set of symptoms and other

data. When an error occurs the computer net-

work identifies the error with a code number.

Then, OPERA's task is not one of deciding

which error has taken place, but rather one of

printing the pertinent information concerning

that error. This information basically consists

of the probable causes of the error, diagnos-

tic advisories (actions to be performed to find

out the causes of the error in case they are un-

clear) and the steps to be taken to correct it,

called operational advisories. Table 1 depicts

the information about a typical error.

Table 1. Information about a typical

error.

Message depicted on the firing room

consoles

{ FEP 141 ($$$$) MICROCODE DID NOT

KECEIVE AN ACKNOWLEDGE SIGNAL FROM

THE I/0 ADAPTER, DATA ACQUISITION

HAS BEEN INHIBITED. MICAS=$$$$,

NSB=$$$$ }

{ ** TERMINAL ERROR FOR THE GSE FEP.

THE I/O ADAPTER DID NOT SEND AN

ACKNOWLEDGE SIGNAL TO THE

MICROCODE DURING THE OPERATION

INDICATED BY MICAS.

Probable cause(s):

1. I/0 Adapter failed.

2. GSE Option Plane failed.

3. I/O Adapter port on 4-port

controller failed.

4. FEP T/R failed.

Operations advisory:

1. Halt CPU, and record CPU

registers. Push CPU through

recovery.
2. If redundant FEP hasn't taken

over, configure another FEP,

or $CLAI existing FEP again.

3. $SPRCVE

4. If redundancy isn't available,

and original FEP fails to

$CLAI, then troubleshoot per

following diaEnostlc advisory.

5. Lookup the MICAS in the

microcode llstlngs, and verify

the operation being executed

at the time of the anomaly.

Diagnostic advisory:

1. SDPLORT LI 5

2. SEQ FEPIDI, If errors occur,

I/O Adapter thumbin may assist

troubleshooting.

3. GSE M02

4. SEQ FEVTR1

(loop T/R via RCVS). }

When malfunctions occur, messages like this

one (in the figure it is displayed in the first set

of braces) appear on the firing room consoles

of the system engineers monitoring launch ac-

tivities. The error message designator, FEP

141, indicates the sub-system of the prob-

lem (in this case, the Front End Processor),

and the error number. Dollar signs are used

as place holders for actual hexadecimal ad-

dresses. This error occured because the FEP's

Input/Output adapter did not send an ac-

knowledgement to the microcode during the

operation indicated by the address in the MI-

CAS register. OPERA's response to this mes-

sage is as follows (OPERA output is the text

in the second set of braces). The text, denoted

by two asterisks, is a note field obtained from

the network system's documentation. This is

provided to the system engineer as a conve-

nience so that that he/she does not need to

take the time to consult the manuals.

Probable causes for this error are listed

next. Causes are listed such that the first

probable cause is the most likely, the second

is the second most likely, etc. More than one

196

problem cause may apply to the error. For this

particular error, the probable cause is a failed

piece of hardware; from the most specialized

piece of hardware, the I/O Adapter, down to

the most general, the FEP's transmit/receive

circuitry.

After the probable causes, the operations

advisory is listed. This set of advisories de-

tails what should be performed to remedy the

situation while the launch is currently under-

way. Because of this requirement, any action

that would jeopardize the launch can not be

included in this advisory. Step 4 mandates

that if a redundant FEP is not available, the

potentially failing FEP is taken off-line and is

given a more thorough examination using the

diagnostic advisory.

The diagnostic advisory consists of a se-

ries of actual diagnostic programs to execute

that may determine the cause of the problem.

These procedures can not be run on any equip-

ment that is necessary to the continued success
of the launch.

However, OPERA has nothing to do with
the content of this information. This has been

gathered by human experts who are familiar

with the computer network. Experts may dis-

agree strongly about the content of this in-

formation, but, again, OPERA does not help

the experts to gather this information, or to
choose between disparaging information. Of

course, the value of OPERA as a consultant

to the humans who are monitoring the net-

work depends directly on the appropriateness
and correctness of the information printed by

OPERA.

2 OPERA: A Classification

Problem-Solving Task

At first sight, one may think that the task

of building a knowledge acquisition interface

for OPERA is just one of building a data en-

try program that will transform the English

text about the errors given by the experts into

the data structures of OPERA. This clearly

will not affect the operation of OPERA. But
if the information about the errors is incom-

plete or incorrect, OPERA would be of very

lltt]e use to the humans monitoring the com-

puter network. It is clear that the acquisition

of the correct knowledge from the experts is

essential, if OPERA is to serve a credible role
as consultant.

Although OPERA has not been designed

as a classification task (Gomez and Chan-

drasekaran, 1984; Clancey, 1985), and, as a

result, there is not a hierarchy of concepts me-

diating the knowledge about the errors, the

knowledge for each error gathered by human

experts and printed by OPERA clearly con-
stitutes a classification task. In classifica-

tion problem-solving, knowledge is organized

into a hierarchy of concepts. Top concepts in

the hierarchy represent the most general con-

cepts. Lower concepts in the hierarchy are re-

finements of the upper concepts. The main

idea behind this methodology is that concepts,
rather than lower level constructs such as rules

or procedures, provide the criteria to analyze

and organize domain knowledge and acquire

knowledge from experts. This translates into

the following knowledge acquisition maxim:
"Do not ask a domain expert for the rules or

procedures he/she uses in analyzing an error

or problem, ask him/her for the concepts that

he/she uses to conceptualize or classify the er-

ror, and 'then you can ask him/her for the

rules or procedures." From a problem solv-

ing point of view, the hierarchy forces the ex-

pert to make explicit the high level concep-

tual steps (nodes in the hierachy) which he/she
will have to consider in determining the proba-

ble causes, advisories, and diagnostic steps for

a given error. From a knowledge acquisition

point of view, approaching this task as a classi-

fication task becomes a necessity if the knowl-

edge acquisition interface is going to go beyond

197

a data entry program, which would merely

prompt the user for the probable causes, ad-

visory, etc. The knowledge acquisition inter-

face uses the hierarchy to automatically depict

knowledge stored in the upper concepts upon

request of the human expert. Then, while a

human expert is adding knowledge about an

error, he/she may decide to consult knowledge

that he/she has stored in the upper concepts.
The detailed way in which this is done is ex-

plained in section 5.

The knowledge of most domains may be

divided into factual or hard and heuristic or

soft. Heuristic knowledge is problem-solving

knowledge about a domain. In most cases,
there is no concensus among experts about

how this knowledge should be organized, what

constitutes this knowledge, its activation, etc.

This situation is reflected in the saying: "each

expert has her/his own book." The trouble

shooting knowledge that diagnosticians have

clearly falls within this type of knowledge. In

contrast to heuristic knowledge, factual knowl-

edge reflects the way things are. There is little

disagreement among experts about what con-

stitutes this type of knowledge. The knowl-

edge that a pathologist has about the human

body clearly falls within this category. These

two types of knowledge are not dichotomous

ones, but rather there is a rich interrelation

between them. The heuristic problem-solving

knowledge of a diagnostician may have need of

the factual knowledge, especially in those cases

in which the solution of a problem cannot be

obtained directly by applying some right-at-
hand rules.

The object of this paper, however, is not to

explore the relation between problem-solving
on one hand, and heuristic and factual knowl-

edge on the other hand, but rather to inves-

tigate the relation between knowledge acquisi-

tion and these two types of knowledge. In the

next two sections, we show the role that these

two types of knowledge play in knowledge ac-

quisition within the domain of the CCMS net-
work.

3 A Factual Knowledge Hi-

erachy for the CCMS Net-

work

In the domain of CCMS network errors,

a taxonomy of errors may be built based on

the structural components of the network.

This classification hierarchy is based on "hard"

knowledge and does not follow any heuristic

principles. It reflects the way things are. Fig-

ure 1 depicts a portion of this hierarchy. The

three children of the root node, stand for Front

End Processor Messages, Input/Output Sys-

tem Messages and Operating System Integrity

Messages. The FEP Messages are in turn di-

vided into four categories: Ground Support

Equipment, Launch Data Bus, Pulse Coded

Modulation and Uplink messages. These in

turn are subdivided into further categories.

The IOS2 submessages listed are not termi-

nal nodes, but instead are categories that in

turn are subdivided into other categories. Fi-

nally, the terminal nodes of this hierarchy will

consist of individual error messages.

The relevance of this hierarchy for knowl-

edge acquisition is that knowledge stored un-

der the nodes of this hierarchy may be used

by the human expert while she/he is in the

process of adding experiential/heuristic knowl-

edge about individual errors. The knowledge

stored under these concepts are causes, advi-

sories and corrective steps. This knowledge, as

we have been reiterating, is factual and resides

in the manuals describing the CCMS network.

Some of this knowledge may be very relevant

to a domain expert when he/she is entering

the causes, advisories, etc. for a specific error.

This is similar to the situation of a physician

who finds it necessary to consult a medical text

book about the functions of organs, while di-

agnosing a patient.

198

_IOS2-SBKB 1
IIIOS?-BDSK)

_lOSZ- BFR_J

'IU_.K-FtP-.S_)

Figure 1: A Portion of the Hard Knowledge

Hierarchy of the CCMS Network

The knowledge in the hierarchy is organized

following strict inheritance rules. That is, ev-

ery piece of knowledge in an upper-concept is

true of all its subconcepts. As concepts ap-

proach the tip nodes, the knowledge becomes

more specific. The user may traverse this hi-

erarchy by using the mouse either in a top-

down or in a bottom-up fashion. Or he/she

may visit any concept without following any

predetermined order. The knowledge will be

displayed to him/her by the interface. Then,

she/he may decide to consult the knowledge or

use that knowledge in its entirety or partially

(see section 5).

4 A Heuristic Knowledge Hi-

erarchy for the CCMS Net-
work

The place of the concepts in this hierarchy,

and the knowledge stored under each concept,

do not obey strict or hard rules; rather, they

depend on the way in which a given human ex-

pert approaches the solution of a problem. As

a consequence, heuristic classification hierar-

chics vary from expert to expert. Figure 2 de-

picts an elaborated heuristic hierarchy. When

a domain expert starts using the Interface,

he/she has at her/his disposal the factual hi-

erarchy and an initial heuristic hierarchy sim-

ilar to the one depicted in Figure 2 but much

less detailed. This initial heuristic hierarchy is

provided to the expert as a basis for him/her

to start building his/her own hierarchy. Of

course, he/she may disagree with the struc-

ture and/or content of the hierarchy, and as a

consequence he/she may decide to change this

initial hierarchy to conform to his/her view of

the problem-solving knowledge.

In building this hierarchy, an expert is in-

structed to proceed in a top-down manner.

The Interface walks a domain expert who is

unfamiliar with the interface through the fol-

lowing steps:

What are the most general categories

(software, hardware, etc.) that come to

your mind when the error, say, FEP-132
occurs" ?

Once you have determined that the error

is, say, a software problem, which subcat-

egories within the software do you think
about?

• Which advisories and/or causes are

known for a given category?

Once the domain expert has acquired some

familiarity with the interface, the knowledge

acquisition process concentrates on entering

advisories about individual errors. During

this process, the domain expert may decide

to modify the heuristic hierarchy, by adding

new links, altering existing links or deleting or

adding advisories stored under the nodes. But,

in most cases, the expert may use the knowl-

edge stored by him/her in the heuristic hier-

archy and in the factual hierarchy in order to

build knowledge about individual errors. This

is explained in detail in the section below.

199

IEXPLAINED-CONDITION

INCORRE(IT- BOOT- PROCI

DMI- USAGE" SHORTCUT]

_IRONG- CDBFRIE:ACICPU I

FPL/UPS- ANnMAL ¥l

PERATIONS- .SUPPORT]

EBUG-ENV RON Nq

 -'..IN W-oPsYsIFIR,w. R.FI
\\'IW ' -OES tN-S"Cq

Figure 2: A Portion of an Elaborated Heuristic Hierarchy for the CCMS Network

5 A Walk Through The In-
terface

The interview process has two phases; the
first is the construction or modification of the

domain expert's error classification hierarchy,

and the second is the generation of OPERA

advisories. These two phases need not be

strictly ordered and can be interleaved, i.e.,

domain experts axe not forced to construct

their final classification hierarchies before any

advisories are created, but rather they are free

to change their hierarchies at any time. To

minimize the amount of startup time and to

give the domain expert an idea of what we are

after, we provide an elaborated error classifi-

cation hierarchy designed from Grumman sys-

tems engineer Bill Verhagen's hierarchy (see

Figure 2). This hierarchy provides systems en-

gineers unfamiliar with the interface a staxting

point from which they can begin to coalesce

their experiential knowledge of the CCMS net-

work. While initial interviews require some

instruction and typically last several hours, a

given interview session can be accomplished

in as little as 30 minutes, depending on the
amount of information to be elicited.

5.1 Creating and Editing OPERA
Advisories

The primary goal of the interface is the ac-

quisition of knowledge about error messages.

Currently the data collected axe exported to

the OPERA system in the form of advisories

enumerating the probable causes, operational

advisories, and diagnostic advisories for spe-

cific errors generated by the CCMS network.

The first step in creating an advisory is choos-

ing the error message to describe. The user is

presented a menu of error messages that were

previously specified by the Knowledge Engi-

neer. The error messages on this menu reflect

those errors that the Knowledge Engineer is in-

200

terestedin collectinginformationabout. The
user is free to choose any message on the menu.

5.1.1 Placing Errors in the Heuristic

Hierarchy

Once an error message has been chosen, the

user is asked to place the error within his cur-

rent heuristic hierarchy. To aid the user in this

task, the interface provides help in the form of

status register decodings and notes provided

by the Knowledge Engineer.

Given this help, the user should be able to

place the error in his heuristic hierarchy. Plac-

ing the error within the heuristic hierarchy is a

matter of specifying which node is to become

the error's parent. If a suitable parent does

not exist in the hierarchy, the user is given a

chance to create and place the parent in the

hierarchy at that time. It may be, however,

that the parent of the parent (grandparent of

the original error message) does not exist in

the hierarchy. Again, the user may create and

place the grandfather in the hierarchy. This

process can continue as long as necessary un-

til the chain of new error categories can be

linked to a node in the hierarchy (see Figure 3).
Once the error has been inserted into the hi-

erarchy, the interface gives the domain expert

the opportunity to create the list of probable

causes, operational advisories, and diagnostic
advisories associated with the error.

5.1.2 Causes, Operational Advisories,

and Diagnostic Advisories

Adding and editing cause and advisory in-

formation is quite simple. A pop-up menu

is presented that allows the user to pick be-

tween changing probable causes, operational

advisories, or diagnostic advisories. Once an
area has been selected the interface allows the

user to: add new lines of information, edit

specific lines, rearrange the order of lines, or
delete lines. Each line consists of free-form

text keyed in by the user or mouse-selected

from default information contained in the fac-

tuai and heuristic hierarchies. Figure 4 shows

the interface screen during the entry of prob-
able cause data for the FEP 132 error.

5.1.3 Using the Default Information

As mentioned above, the user may cre-

ate advisories by selecting text, via the mouse,
from the factual and heuristic hierarchies. The

texts available to be selected are those de-

fault advisories constructed by the domain ex-

pert and knowledge engineer and stored in the
heuristic and factual hierarchies. When the

user is to the point of entering in a line of

text of the probable causes, operational advi-

sory, or diagnostic advisory, the system dis-

plays the default advisories in the lower right

window pane of the interface screen (see Fig-

ure 5). How the interface determines which

default advisories are displayed in this pane is
described below.

First, the interface must determine whether

the user has chosen to display information

from the factual hierarchy, from his own

heuristic hierarchy, or both. This determina-

tion is based on the option the user has chosen

using the Select Inheritance command (the de-

fault option is to show both). If the user has

chosen to display both or has simply taken the

default, the interface will collect default ad-

visories from both hierarchies, displaying the

user's own defaults at the top of the window.

This is done under the assumption that the

expert will feel that his own default advisories
are more relevant than those of the knowl-

edge engineer. If the user chooses one or the

other type of knowledge, the interface will col-

lect only the default advisories from the corre-

sponding hierarchy.

Given that the system knows which hierar-

chy or hierachies to collect the default advi-

sories from, the interface then uses the hier-

archy's structure to decide which advisories to

display. For example, suppose the FEP 132

201

f

Heuristic Hierarchy

Error node

_.. In hierarchy

New error New error

Category 2 Category 1 FEP - 132

4 M t-1 I

Figure 3: Adding Error Message to the Heuristic Hierarchy

Problble Causes:
1: HIM Master Control Card fa_led.

2: HIM BUS Card fe_led.

3: Xntern_ttent lo9tc failure.
4: Internal HIM Card fa41ed.

£1na Options

Add Line
Edit Line
Delete Line
Move Line
Insert Line
AccePt
ReJect

I

Figure 4: Entering Probable Cause Information

202

errorused above was classifiedas a mechan-

icalanomaly and the user had chosen to use

defaultadvisoriesfrom hisown hierarchy.The

interfacewould begin collectingdefaultadvi-

soriesfrom the mechanical anomaly node in

the hierarchy.These advisoriesare the most

specificand willbe displayedat the top ofthe

window pane. The interfacethen traversesup

the hierarchyto the ancestorsof the mechan-

icalanomaly node. The defaultadvisoriesfor

each ancestorare collectedand added to the

listofadvisoriesto be displayedasterthe advi-

soriesfound inmechanical anomaly. This pro-

cesscontinuesuntilthe root node isreached

alongeach ancestralpath. The by-product of

thisprocessisa listofallthe advisoriesfrom

the parentofthe errorwe aredescribingup to

the root of the hierarchyin order from most

specificto most generic.

Once the advisories have been collected, the

user can select them using the mouse and in-

clude them, as is, in his description, or modify
them in anyway he chooses. This means that

the domain expert does not need to store "per-

fect" advisories, but can store advisory tem-

plates that can be modified as necessary. This

greatly enhances the flexibility of the interface.

Another enhancement stems from the fact

that the default advisoriesthemselves are

storedin a hierarchicalstructure.This allows

differentlevelsof defaultinformationto exist

and be used by the domain expert.One exam-

ple we encountered where thiswas usefulwas

in the specificationof diagnosticadvisories.

Typically,a diagnosticadvisoryincludesrefer-

ence to sequencesofdiagnosticprograms that

should be executed. The case may be, how-

ever,that an entirediagnosticsequence need

not be run but onlyseveralofitssub-tests.To

accommodate thissituationthe domain expert

may specifythata defaultadvisoryhas itsown

children.This a/lowsthe system to recognize

thatan advisorydetailinga sequence of tests

may have childrenthat are the actualsub-

tests. For example, the diagnosticsequence

SEQ CP1 - CPU DIAGNOSTIC PART I,has

the followingnine sub-tests:

"TST02 - X0RB TEST"

"TST03 - REGISTER ADDRESSING TEST"
"TST04 - R2 DATA INTEGRITY TEST"

"TSTO5 - BLM/BRX TEST"

"TST06 - R3-RIS DATA INTEGRITY TEST"

"TST07 - ABRB TEST"

"TST08 - NOP TEST"

"TST09 - LDX TEST"

"TSTIO - IBR TEST"

The user can chose the string "SEQ CP1 -
CPU DIAGNOSTIC PART 1" to include in

his advisory by clicking the left button of the
mouse when the mouse cursor is above this

text, or he can see the associated sub-tests by

clicking the right button. If there were sub-

sub-tests, these could be viewed by clicking

the right button again. Returning to a higher

level is accomplished by clicking the middle

button of the mouse. In summary, clicking
the left mouse button selects the text under

the mouse cursor, clicking the middle button

takes the user up one level in the advisory hi-

erarchy, and the right button takes the user

down one level in the advisory hierarchy.

When the user has finished entering his de-
scription of an error, he may choose to save

it in his hierarchy or simply abort. Saving the

information amounts to creating the necessary

frames and their fillers in the expert's hierar-

chy. If the user does not abort, the expert's hi-
erarchy is redisplayed with the new error node

included. This concludes the discussion of the

error description process.

5.2 Modifying the Structure of
Heuristic Hierarchies

Maintaining the domain expert's error

classification hierarchy is one of the most im-

portant tasks of the interface. Several power-

ful options have been implemented to allow the

2O3

Opera Knowledge Acquisition Interface

Clear Screen Oelete Error Hessage Help Hierarchy flalntenance

H I/. Inrrn: rnv_noN_._zrlg;NTll

I! //

OpOrdlt torsi Clteoor#el

If llne printer 4S 4nOD, assign reportl Or s_sten nessages to t

lighten up solonold screus tf paper urtnkles or doesn't feed.

Peplece MMD/nHD/BDSK or replnce heeds end peck tn the event or
Contact _elntenence In the event of • pneunett¢ logs.

=

Operst|onml Rdvtlortll

]1 If 14hi printer tl tnop. ass49n reportl or lylte_ nella9

es to the other printer vl| $$GPOOL FISSIGH.

I LIn_ O.otLons

Add Line
[dit Line
Delete Line

Hove Line
Insert Line

_ccept

R_ject

Figure 5: Interface Main Screen with Default Advisories

user to quickly and easily change the structure

of his/her hierarchy. These options include

adding new error categories, adding and delet-

ing links between errors or error categories,

and moving sub-hierarchies from one place in

the hierarchy to another.

5.2.1 Adding New Error Categories

New error categories are added to the do-

main expert's error classification hierarchy us-

ing the Add Error Category option. This op-
tion allows the user to create a new error cat-

egory and place it in the hierarchy. The user

is prompted for the name of the new category

and the category that is to be its patent. The

parent category must exist in the hierarchy

and may be given either by typing its name

via the keyboard or by clicking on its graphical

representation using the mouse (all the nodes

in the domain expert's hierarchy are mouse se-

lectable). After this information is given, the

interface redisplays the hierarchy reflecting the

addition of the new category.

5.2.2 Adding and Deleting Links

Links or inheritance paths can be added to

and deleted from the expert's hierarchy using

the Add New Link and Delete Link options.

In the case of adding a new link, the user is

prompted for a child category and a parent

category• The system checks to see if the par-

ent node is a descendant of the chihl node, and

if it is, the attempt is aborted. This constraint

guarantees that cycles will not be created by

adding new links. Deleting a link is similar

to adding a new one. The user is prompted

for the parent and child nodes that define the

end-points of the link. Assuming that the par-

ent and child nodes given indicate an existing

link, the system proceeds to remove the link
• [

and redisplay the luerarchy. Because the er-

ror classification hierarchy is a tangled hier-

204

archy, child nodes may have multiple parents

and deleting any one of them does not effect

the child node. Deleting the last link between

the child and the rest of the hierarchy, how-

ever, effectively removes the child and any of
its descendents that are not attached to the

rest of the hierarchy through their own links

(see Figure 6).

5.3 The Restructure Hierarchy Op-

tion

Should the user wish to radically restruc-

ture his/her heuristic hierarchy, the Restruc-

ture option can be used. This option allows

the user to move sub-hierarchies from one par-

ent node to another. The user is prompted for

the root node of the sub-hierarchy he would

like to move and its new parent. If the root

node has several existing parents, a menu con-

taining the names of these parents is displayed

and the user is expected to click on the name of

the parent node that he wishes to break away

from. Constraints involving the creation of cy-

cles and validity of node names are enforced to

prevent corruption of the hierarchy. When the

constraint checks are passed the hierarchy is

redisplayed.

5.4 Modifying Default Information
Within Heuristic Hierarchies

Information stored in the interior nodes

(error category nodes) of the heuristic hierar-

chy is modified using the Edit Category Data

option. With this option, users can explain

the reasoning behind their classifications and

create or edit default operational and diag-
nostic advisories. Default advisories contain-

ing the domain expert's experiential knowl-

edge are displayed and used during the cre-
ation of OPERA advisories. Each default ad-

visory and the expert's reasoning about his
classification consists of one or more lines of

text.

5.5 Specific Tools For OPERA

A special maintenance menu is provided

to the knowledge engineer so that he can:

add new errors to be described to the sys-

tem, dump the collected advisories in a format

readable by OPERA, and change the struc-

ture of the factual hierarchy. To add a new

error, the knowledge engineer must enter the

information that the domain expert is going to
need before he can describe the error. This in-

cludes the status register values of any register

inserts, the actual text of the error message,

the formats of the register inserts, the notes
from the CCMS documentation about this er-

ror, and the placement of the error within the

factual hierarchy.

Dumping the collected advisories

to OPERA is done by simply clicking a menu

option. The user is then asked for the file-

name of the dump file. The data output is in

a pseudo-LISP form that OPERA can directly

input. Data may be dumped at any time and

as many times as needed. Changing the struc-

ture of the factual hierarchy is handled simi-

larly to changing the structure of the expert's

hierarchy. The knowledge engineer uses the

same restructuring commands that are avail-

able to the domain expert for changing heuris-
tic hierarchies.

6 Design of the Two Hierar-

chies

The basic unit of information in our rep-

resentation is a frame representing a single

node within a hierarchy. A node (frame) may

represent a root, a leaf, or an internal node

within a hierarchy. Each node is known by

a "node name" that is specified as an ASCII

string (without spaces) by the expert creat-

ing the node. Associated with each node are

two types of information: first, the informa-

tion that details the hierarchy (i.e. the ex-

pert) to which the node belongs, its parent

206

a)

I Mecha.nlcM

Anom,v, ly

initialiution

Link to be delefed

online

CDB FR. powe I

sub-system

CDBFR

HIM

FEP

Conaole

Error-132 !

b)

[MechanicnlAnoma.lv

/ initildilatio n

HCDBFR-p _ _ E 132 I

Figure 6: Deleting Links Between Nodes in the Heuristic Hierarchy: a) before, b) after

nodes, and its child nodes within the hierar-

chy; and second, the domain information that

node stores within that hierarchy.

The frame structure for specifying nodes is

as follows. A node is identified by a "name".

The information detailing a node's position

and connections within a hierarchy are stored

under the property "*inherit*" while the do-

main information is stored under the property

"*frame*". Within each property, the top level

slot names the expert creating the node. This

expert name uniquely identifies the hierarchy

to which the node belongs. Within the "*in-

herit*" property, under the expert name are

two slots, "children" and "parents", that iden-

tify the links within this expert's hierarchy. In

frame notation, a node is defined as:

(<node-name>

(*frame*

(<expert-namel>

(<domain-data ...))

(<expert-name2>

(<domain-data . . .))

(<expert-nameN>

(<domain-data ...)))

(*inherit*

(<expert-name1>

(children (<node-name> ...))

(parent (<node-name>)))

(<expert-name2>

(children (<node-name> ...))

(parent (<node-name>)))

(<expert-nameN>

(children (<node-name> ...))

(parent (<node-name>)))))

The OPERA Interface is built upon a vari-

ety of primitive functions that control access
to information within the entire data struc-

ture. An expert is limited to his/her hierarchy

and the factual hierarchy defined by the knowl-

edge engineer. The system's primitives control
the inheritance of information within an ex-

pert's hierarchy and from the factual hierar-

chy to the expert's hierarchy. An expert is un-

aware that the data structure (frame) storing

his information also stores other experts' in-

formation. Duplicate names for internal nodes

206

within heuristic hierarchies create no problems

for keeping the domain experts' information

separate.

In the OPERA domain, heuristic hierar-

chies share leaf nodes describing individual er-
rors. All information entered about an error

by any number of experts is recorded within

the one frame describing the individual er-

ror. Contradictory and conflicting information

among experts is kept segregated within each

expert's subframe. In this fashion, the knowl-

edge structure supports multiple, conflicting
views of the domain without destroying the

integrity of any expert's information.

A priori knowledge about the domain is

stored in a hierarchy with the expert name:

"FACTUAL". The system's primitives recog-

nize "FACTUAL" as identifying the factual hi-

erarchy. Information within the factual hier-

archy is available to domain experts as they
define their hierarchies and enter specific in-

formation about individual errors. The sys-

tem uses the factual hierarchy to display sug-

gestions and/or possible text for the expert to

consider, modify, and incorporate in his/her

hierarchies. The system prevents experts from

altering the factual hierarchy.

This knowledge structure with its primitives

allows multiple experts to define heuristic hi-

erachies (which can be tangled) reflecting their

view of the domain, to interact with an a priori

knowledge base without contaminating it, and

to enter information into a single data repre-

sentation without fear of corrupting informa-

tion entered by other experts. At the same

time, all information is available to the knowl-

edge engineer in a consolidated form requiring

little manipulation to make sense of the infor-
mation.

7 Conclusions and Future

Research

A knowledge acquisition framework that
makes use of factual and heuristic knowledge

has been described. This technique has been

applied to the acquisition of advisories and

probable causes about errors that occur in the

computer network controlling the space shut-

tle launch processing system. The knowledge

acquisition interface is currently running on a

Symbolics 3653 under version 8.1 of the Gen-

era operating system. The implementation is

in the process of being converted to run un-

der CLIM (Common Lisp Interface Manager)

in Allegro Common Lisp on a SUN platform.
SUN workstations are much more common at

the Space Center than Symbolics machines,

and this migration should provide systems en-

gineers with greater accessibility to the inter-

face. Information about approximately 50 er-

ror messages has already been collected from

7 experts. While these error messages are pri-

marily concerned with the Front End Process-

ing sub-system, we are expanding our efforts

to recruit experts with knowledge about the

other sub-system messages.

Although we have applied these ideas to
the construction of a knowledge acquisition

interface for OPERA, and some of the com-

ponents of the interface are OPERA depen-

dent, (e.g., the final dumping of the advisories

into OPERA data structures), the interface

has a range of application that goes beyond

OPERA. In principle, any domain that can be

analyzed into a factual and a heuristic hierar-

chy as described in the body of the paper falls

within the scope of the interface. Of course,

this description is very general and some do-

mains are going to have idiosyncracies that will

require special mechanisms to handle them.

However, if one stays within the area of de-

termining the probable causes and advisories

of computer network errors, then the interface

can be used in many subdomains with very

207

minor modifications.

Table 2. A Portion of the Data

Dumped From the Interface

to OPERA.

** MSG-CAUSES:

((FILTERS) 1.

((FILTERS) 2.

((FILTERS) 3.

((FILTERS) 4.

GSE Option Plane has

failed)

GSE FEP Option Plane

microcode has failed)

GSE FEP 4-port con-

troller has failed)

GSE FEP CPU failed)

** DIAGNOSTIC-ADVISORY: **

((FILTERS) i. M02 on the data

acquisition plane)

((FILTERS) 2. SEQ FEPIOI)

((FILTERS) 3. SEQ CPI, CPU Diag-

nostic Part I)

((FILTERS) 4. SEQ CP2, CPU Diag-

nostic Part 2)

((FILTERS) 5. SEQ OPD, Option Plane

Diagnostic)

((FILTERS) 6. $DPLORT LI 4)

((FILTERS) 7. SDPLORT LI 5)

** INSERT-FORMAT: **

(INSERT1 ASCII CPU-NAME-INTERPRET

CPU-NAME)

(INSERT2 HEX MDT-CDT-PTR-DECODE

MDT-CDT-PTR)

** OPS-ADVISORY: **

((FILTERS) I. Note the MDTICDT

Pointer Address in

the error message)

((FILTERS) 2. If ACTIVE GSE FEP,

verify that STANDBY

GSE FEP is O.K.)

((FILTERS) 3. Halt the CPU and

record CPU teas)

((FILTERS) 4. Perform applicable

data retrieval progs

$SPRCVE, $SPBLOK,

$SPSNPR)

** MSG-TEXT: **

FEP 142

INSERT1

MICROCODE DETECTED INVALID

MEASUREMENT/COMMAND TYPE CODE,

DATA ACQUISITION INHIBITED,

MDT/CDT PTR =

INSERT2

We are planning to incorporate in the inter-

face some of the ideas described in (Gomez

and Segami, 1990; Gomez and Segami, 1991).

We are targetting two possible applications of

these ideas. One is the construction of the

factual hierarchy from natural language input.

The other is to use natural language combined

with some elicitation techniques (Boose and

Bradshaw, 1987) to build the heuristic hierar-

chy during the first stages of its construction

by domain experts unfamiliar with the inter-
face. The final result will be the construction

of a generic knowledge acquisition interface in-

corporating the automatic construction of hi-

erachies from natural language input.

References

Adler, R., Heard, A., & Hosken, B. (1989).

An Expert Operations Analyst (OPERA)

for a Distributed Computer Network. AI

Systems In Government (AISIG). Wash-

ington D.C.

Boose, J. & Bradshaw, J. (1987). Exper-

tise transfer and complex problems: us-

ing AQUINAS as a knowledge acquisition

workbench for expert systems. Interna-

tional Journal of Man-Machine Studies,

26, 3-28.

Clancey, W.J. (1985). Heuristic Classifica-

tion, Artificial Intelligence, 27, 289-350.

Gomez, F. & Chandrasekaran, B. (1984).

Knowledge organization, and distribution

for medical diagnosis. In W. Clancey

& E. Shortliffe, Eds. Readings in Medi-

cal Artificial Intelligence. Reading, MA:

Addison-Wesley.

Gomez, F. & Segami, C. (1990). Knowl-

edge acquisition from natural language

for expert systems based on classification

problem-solving methods. Knowledge Ac-

quisition, 2, 107-128.

Gomez, F. & Segami, C. (1991). Classifi-

cation Based Reasoning. IEEE Transac-

tions on Systems, Man, and Cybernetics,

21(3), 644-659.

209

Information Management

211

PRECEDING PAGE BLANK NOT FILMED

_jg-I ° ,

N92-23373
• / I /

A Spatial Data Handling System

for Retrieval of Images

by Unrestricted Regions of User Interest

Erik Dorfman _ i _ _' P/")]
Robert F. Cromp

Hughes STX

NASA/Goddard Space Flight Center

Greenbelt, MD

dorfman_nails.gsfc.nasa.gov

f
Code 934

NASA/Goddard Space Flight Center , " 'J

Greenbelt, MD _;_" _('/

cromp nails.gsfc.nasa.gov

Abstract

The Intelligent Data Management (IDM) project at

NASA/GSFC has prototyped an Intelligent Information

Fusion System (IIFS), which automatically ingests meta_
data from remote sensor observations into a large catalog

which is directly queryable by end-users. The greatest

challenge in the implementation of this catalog has been

supporting spatially-driven searches, where the user has

a possibly complex region of interest and wishes to re-
cover those images that overlap all or simply a part of

that region.

A novel spatial data management system is described,

which is capable of storing and retrieving records of image

data regardless of their source. This system has been

designed and implemented as part of the IIFS catalog.

A new data structure, called a hypercylinder, is central

to the design. The hypercylinder is specifically tailored
for data distributed over the surface of a sphere, such as

satellite observations of the Earth or space. Operations

on the hypercylinder are regulated by two expert systems.

The first governs the ingest of new metadata records, and

maintains the efficiency of the data structure as it grows.
The second translates, plans, and executes users' spatial

queries, performing incremental optimization as partial

query results are returned.

ciplines to quickly recover datasets of interest from the
vast, constantly-expanding archive.

The ability to query or browse large catalogs of im-

age data by the spatial characteristics of desired datasets

is involved in solving what is referred to as the spatial

data handling problem. Whether such a catalog con-

tains downward-looking images of the Earth or outward-

looking images of space, the spatial data structures resi-
dent in the catalog must support two basic spatial search

operations required by the general scientific community

(see Figure 1):

• Window query: given a region of interest, find all

images that overlap the region.

• Containment query: given a region of interest, find

all images that completely contain the region.

There is also a simple case of these queries, whose use
is sometimes convenient:

• Point query: given a point of interest, find all images

that overlap the point.

In addition, users require the ability to combine the

above operations into more complex spatial queries via

the operators AND, OK, and NOT.

1 Introduction

1.1 Needs of the scientific community

With the planned launching of the Earth Observing Sys-

tem (EOS) platforms and with the continuing generation

of data by existing missions such as the Hubble Space

Telescope (HST), NASA faces one of its greatest chal-

lenges yet: the cataloging of remote-sensor data in a man-
ner that will allow users from a variety of scientific dis-

213

1.2 Problems with existing approaches

Most attempts at spatial data handling in data cata-

logs encounter major difficulties from the start because

the catalogs are implemented using relational database

(RDB) packages. RDBs generally do not support data
structures for handling anything other than linearly-

ordered records. The. object-oriented database (OODB)

research of recent years provides a means of implementing

spatial data structures directly inside data catalogs, and

PR_..CEDING PAGE BLANK ,"_K)TFILMED

drop in performance during search.

Figure 1: Images A and B both satisfy a window query

on the shaded region R, but only image B satisfies a con-

tainment query on R.

OODB technology has thus been utilized in implement-

ing the spatial data management system described in this

paper.

Some catalogs circumvent most spatial data handling

problems by virtue of only having to deal with queries in-

volving a single instrument. By using information about
the orbit of the instrument's platform, spatial queries are

mathematically converted into sets of path-row coordi-

nates that specify images satisfying the query, and these

coordinates are used as the search keys for the images.

The problem with this approach is the lack of both ex-

tensibility and flexibility. First, metadata from new plat-
forms and instruments cannot be added without simul-

taneously authoring new spatial-search software. Sec-

ond, images with identical path-row coordinates might
not have identical locations due to fluctuations in the or-

bit of the platform, so a path-row-based spatial query

system may falsely accept or reject images during a query.

Even catalogs that employ robust spatial data handling
techniques encounter difficulties because they actually

treat the globe not as a sphere but as a planar surface, a

consequence of employing spatial data structures that use
latitude-longitude based coordinate systems. The prob-

lem is that the surface of a sphere cannot be mapped

onto a plane without introducing discontinuities and con-

siderable distortion near the poles, as is evident in most

cartographic projections. When using planar spatial data

structures (such as quadtrees or k-d trees) to represent an
inherently spherical domain, these anomalies present ma-

jor difficulties in query processing and often result in an

"unbalancing" of the data structure, leading to an overall

1.3 The application

The Intelligent Data Management group is conducting
research into the development of data management sys-

tems that can handle the archiving and querying of data

produced by Earth and space missions. Several unique

challenges drive the design of these systems, including

the volume of the data, the use and interpretation of the

data's temporal, spatial, and spectral components, the

size of the userbase, and the desire for fast response times.

The IDM group has developed an Intelligent Informa-

tion Fusion System (IIFS) for testing approaches to han-
dling the archiving and querying of terabyte-sized spatial

databases (see Figure 2). Major components of the sys-

tem are the mass storage and its interactions with the

rest of the system [Camp91]; the real-time planning and
scheduling for processing the data [Short91]; the extrac-

tion of metadata and subsequent construction of fast in-

dices for organizing the data along various search dimen-

sions [Camp89] [Cromp91] [Dorf91]; and the overall user
interface.

The IIFS design is novel in a number of areas. Semantic

data-modeling techniques are used to organize the mass

storage system to reduce the transfer times of the data
to on-line devices and the mechanical motions of the sup-

porting robotics. Data percolates from near-line mass

storage to on-line disk storage based upon its frequency
of use. A combination of neural networks and expert sys-

tems defines how metadata is extracted to build up search

indices to the underlying database. The metadata itself is

organized in an object-oriented database which has spe-

cial data structures for representing the multiple views of

the data (such as temporal, spatial, spectral, project, sen-

sot) without resorting to multiple copies of information.
A special data structure that maps directly between the

Earth and a sphere organizes the data for efficient spatial

querying. The user interface is configured dynamically at
run-time depending on the scientist's discipline and the

current knowledge in the object database.

Experimentation with the IIFS design and implemen-

tation have shown that greater flexibility is needed in the
spatial data handling routines so that images with a vari-

ety of coverage and orientation can be uniformly retrieved

with respect to a user's region of interest. The remainder

of the paper discusses the enhancements that have been

made to the IIFS spatial data structures and describes an

overall spatial data handling system that combines declar-

ative and procedural knowledge for efficiently managing

spatial queries.

214

law data

instrument
data

meladat

Metadata
Extraction

• Low-loyal signal processing

• Neural networks

*Expert systems

• High.performance computing

(MasPar, Clay)

Intelligent
User Interface

• Glaph_cal and English querying
• User cuslomizable

instrument
mole=data

USQr queries

data and
metadata

Mass Storage
• Distribuled over many devices

• Semantic modelling

Inslrument view

Landsat

metadata
NOAA

metedata

Object
Database

•Object oriented database

• Catalog of Earth and space meta_ala

• Distributed over many devices

IUE)

metedataJ

Figure 2: The high-level architecture of the Intelligent Information Fusion System.

1.4 A solution

A design for a spatial data structure suitable for a large,

heterogeneous image database with global coverage must

account not only for the goals of Section 1.1, but also

the difficulties introduced by the richness of the remote

sensing domain:

• Multiple image orientations, due both to different

satellite orbits, and because there is no such thing
as "fixed orientation" on the surface of a sphere.

• Multiple image shapes, due to the variety of sensors,
the tilt of the individual spacecraft, and the alter-

ation of the image border by geometric correction.

• Multiple image sizes in terms of the extent of the

image boundaries on the surface of the sphere: e.g.,

sensors mounted on airplanes have smaller fields of
view than similar sensors mounted on orbiting plat-
forms.

The data structure described in this paper, together

with the supporting expert systems for ingest and query-

ing, addresses all these concerns. The result is a spatial

data handling system which can handle NASA's next gen-

eration of image catalogs.

2 Simplifying spatial queries by a

transformation scheme

2.1 The general concept

A variety of spatial data handling problems in complex

spatial domains can be solved by mathematically trans-

forming the domain D into a new domain D' where the

corresponding queries can be handled more efficiently

[Sameg0, p. 186]. Such transformations map a complex

object in D (in this case, an image) into a single point in
D': this point is referred to as the object's representative

point. We are then left with the simpler goal of designing
a data structure that can handle the storage and query

of points rather than arbitrary shapes. Two difficulties

with this approach can be encountered:

• A query region R in D must be transformed into

its equivalent R' in D', and R' may be difficult to

generate or to calculate with, even for simple R.

• The transformation may result in some loss of infor-

mation about the stored objects, so that additional

computation may be needed to exactly satisfy a spa-

tim query.

These difficulties are dealt with in Section 4, where the

implementation of the data structure is described.

215

t7

Figure 3: The minimal bounding circle of an image on the

globe. Note that the radius is measured along a great-
circle arc, like all distances on the surface of a sphere.

...i::::_!................................_
i/ : :

,".: "" ":x i 'L-'-\
....: -. . .. _ _ ::.:_ .-. _

..... ' _':" " "Y':' __ 7! .. "..... .e "'i _3.: ..,

ii. :.. _"o "'

i,._ :',.jr 2 _

.i": ".................. .: ;J_

4

"___.._C6:';_:: !..."11!;........._......

Figure 4: A portion of D, showing a group of images and

their minimal bounding circles.

2.2 A transformation scheme for image

data

In order to transform images into points, we discard the
actual boundaries of the image and concern ourselves only

with its minimal bounding circle, which we shall call the

representative circle for the image (Figure 3). This is

closely related to the approach taken by [Oost90], which
takes the minimal bounding circles of objects on a planar

surface instead of on a spherical surface. Note that the

"representative circle" approach eliminates the problems

of multiple image shapes and orientations.

By treating images as circles, we are able to describe
every image by only two parameters: the location of the

circle's center, which we shall denote as _, and the radius

of the circle, which we shall denote as p. Thus, every

image can be treated as a simple point (or, p). Under the

terminology of [tlinr83], _, is the point's location parame-

ter, and p is the point's eztension parameter.

2.3 Visualizing the transformation

Consider a part of the globe over which several images

have been taken, shown in Figure 4. For illustration pur-

poses we will show only a small part of the globe so that
it may be rendered as a simple plane, although it must be

stressed that what is actually being shown is a portion of

a curved surface. This would represent a scenario in D.

To map this scenario to D', we compute for each image

h the center tri and radius Pi of its minimal bounding

circle, and plot the resulting point (tri,Pi) in D' as shown

in Figure 5.

To more compactly illustrate what the space of D' looks
like, we must make some diagrammatic simplifications.

Figure 6 shows how the surface of a sphere can be mapped
onto the perimeter of a circle by means of a space-filling

curve. This is a single curve that begins in the diagram at

point A, passes through every point B, C, D, etc. on the
sphere, and eventually returns to A (also labeled Z in the

diagram). The curve places an ordering on the points: A
is before B, B is before C, etc., and this ordering enables

us to place every point on the sphere's surface onto the

perimeter of the circle below. Note that points which are
close to each other on the circle (like B and C) correspond

to points which are close to each other on the sphere.

By using this mapping, the scenario of Figure 5 is de-

picted again in Figure 7. Here, D' is shown as the surface

of a cylinder: the position on the vertical axis represents
the p value, and the position along the circular perimeter

represents the cr value.

Since individual sensors can be expected to produce

large numbers of images of the same size, we expect the
distribution of representative points for a large, hetero-

geneous image database not to be uniform, but instead
to be concentrated in different strata along the p axis

(Figure 8).

216

0.00

0.05

0.10

E

Figure 6: How the surface of a sphere (above) can be
mapped onto the perimeter of a circle (below) by using

a space-filling curve A, B,..., Y, Z. For clarity, the curve

on the sphere is not shown in its entirety.

0.20

P

Figure 5: The representative points of the images in Fig-

ure 4, plotted in a portion of/Y.

- 0.00

- 0.05

cl -O.lO

Figure 7: The same representative points as in Figure 5,
this time plotted on a cylinder to represent/Y more com-

pactly. Every circular cross-section of this cylinder rep-
resents the entire surface of a sphere (the globe).

217

aerial imagery -------4 _0.0001

(7.5' ph°t_luads) ""'"'"''"--"'"'"'0.001

r" . 00'
MSS/TMimages -''_l_ "" i J. " /

CZC8 images _'_....t.. _0.1

other sources

(Space Shuttle, etc,)

Figure 8: The expected distribution of representative

points in D _. For convenience, p is shown on a logarithmic
sc ale.

3 Processing queries in the trans-

formed space

3.1 Processing window queries

Given a query region R on a sphere, we note that the

further the center of a circle C is from R, the larger the

radius of C must be if C is to overlap R. Let grou(R, r)
denote the locus of all points that are within a distance

of r from R: read this as "grow R by radius r" A sample

R and grow(R, r) are depicted in Figure 9. We observe:

A representative circle Ci = (_i,Pi) overlaps a
region R if and only if its center ai falls inside

gro_ R, p_).

This rule is demonstrated in Figure 10, which depicts in

D a query region R, the representative circles for four im-

ages C1 ... C4, and the region 9ro_R,pi) for the various

image radii pi. Note that:

• ai i8 not inside grotv(R, pl), and aa is not inside
grow(R, p3). Therefore, neither C1 nor Ca overlap
R.

* al is inside 9row(R,pi), and a4 is inside grow(R,p4).
Therefore, both C2 and C4 overlap R.

Now, consider Figure 11. It depicts in/91 the represen-

tative points Ci' -- (_i,pi) for the images in Figure 10.

For each point the corresponding region grow(R, pi) has
been plotted, on the same cross-section of D' where Ci'

grow(R, r)

R

Figure 9: Criteria for a representative circle to overlap

R. Both circles have the same radius, Pi = P2 = r, but
different locations.

resides. Notice that, if grow(R, r) had similarly been plot-

ted for all r in p, the regions would trace out a cone-like

solid in D _. In terms of formulating window queries in

/Y, this means that:

An image's circle in D overlaps a region R if and
only if its representative point in/Y falls within

the cone in /T whose cross-section at p = r is

gro_(R, r).

If the region R is a single point p, then this becomes

the definition for a point query, where grow(p, r) is simply
a circle with center s and radius r.

[Same90, pp. 187-192] observes that, when employing

transformation schemes which represent stored objects by

points that have distinct location and extension param-
eters, window queries and containment queries generally

produce cone-like search regions. This is also true of the

model described above (Figure 12), and for this reason

we refer to the search regions in D _ as search cones.

3.2 Processing containment queries

Up to this point we have dealt with window queries, which

produce cone-like search spaces in D _. A containment

query's search space is also a cone-like region, but differ-

ing in the way a cross-section of the cone is defined for

a given value r of p: instead of its being the locus of all

points p such that an1 point of R is within a radius of r

from p, it is the locus of all points p such that all points of

R are within a radius of r from p. Call this cross-section

cove_(R, r).

218

grow(R, p_) _"'-. _.
grow(R, 03)

:::: :

2 _/ 4

Figure I0: Four representative circles, as they would appear in D. Also shown are 9row(R, pl) for each circle Ci.

Whereas grow(R, r) is relatively easy to compute even
on a sphere, cover(R, r) is more complex. But, as it turns

out, we need never compute cover(R,r) directly to pro-
tess queries.

To begin, notice that since an image with radius x/2
is a full hemisphere, we need not concern ourselves with

images where r > x/2. It can be shown that for all r <
r/2, if all the vertices of R are within a radius of r from

a given point p, then the edges between those vertices are
completely within a radius of r from point p, and thus all

of R is within a radius of R from point p. So cover(R, r)
is actually the locus of all points within a radius of r

from every vertex of R. Therefore, if R has n vertices,
cover(R, r) is the intersection of n circles of radius r whose

centers are at the vertices of R (Figure 13).

Let R have vertices vl • .. v,,. In terms of containment

queries, this means that:

An image's circle in D completely contains a

region/t if and only if its representative point

in D' falls inside all the search cones $1... S,,

where the cross-section of Si at p = r is

gro w(v_, r).

The search cone for the containment query can thus be
defined as the intersection of n search cones: the search

cones for the point queries on the n vertices of R (Fig-
ure 12).

4 The hypercylinder data struc-

ture

4.1 Design issues arising from implemen-
tation details

At the core of the spatial data handling system is the data
structure that stores and retrieves points in if, named

the hypercylinder because of the shape of the transformed

space. To ensure that it is capable of efficiently processing

queries in D, we must consider factors that place practical

limitations on how the corresponding search regions in D _
can be manipulated.

Although the cross-section of a search cone at a given

value of p is easy to generate, computations involving the
cone itself require a great deal more processing. There-

fore we shall handle queries by dividing the search cones
into cross-sections that may be dealt with individually

(Figure 11 provides an illustration of "slices" of a search
cone). The ramification for the data structure is that
D' must be represented internally as a collection of slices

that can be queried independently.

Since we must still compute cross-sections for each slice
of the data structure, we need to divide D' into a man-

ageable number of slices. If slices are infinitely thin (i.e.,
the data points in a given slice all have the same p value),

then even small variations in the extents of images will

result in a need for a large number of slices. We thus let

each slice cover a range of p values.

To execute a query (Figure 14), we handle one slice

of the search cone at a time, and then merge the results

together to form the final result. For each slice, we corn-

219

0.05 = Pl

0.10 = P2

0.20 = P3

0.30 = P4

rp

Figure 11: The representative points for the circles in Figure 10, as they would appear in D _. Also shown are
grow(R, Pi) for each circle Ci _.

22O

Point query Window query Containment query
on p on R on R

Figure 12: The search cones (shaded) in D' for a point query, window query, and containment query.

the search cone for the containment query is the intersection of four search cones for point queries.

Notice that

R cover(R, r)

Figure 13: A region R and cover(R, r). Any circle of radius r in cover(R, r) will overlap all points in R.

221

edge of search cone

interior boundary exterior boundary

p

cone {points satisfy query)Search m Points in alice which de/Initely satidy qum'y

] Points in alice which pcealbly satis_ query

[] Points in alice which definitely do not satisfy query

Figure 14: Slicing up D', and approximating the portion of a search cone inside the slice from p = s to p = t. By

computing the interior and exterior boundaries of the search cone in that slice, we can divide the points in that slice

into three groups - those that definitely satisfy, possibly satisfy, and definitely do not satisfy the query.

222

n

1 2 3 4

Figure 15: The hypercylinder data structure. Square nodes belong to the BST for p, circular nodes belong to the

SQTs for a, white nodes are internal nodes, and black nodes are leaf nodes. A close-up of one slice is depicted, with

n leaf nodes in its SQT. Also shown is how some of the SQT leaf nodes (numbered) might look if the surface of the
slice were "unrolled" (bottom), and how the corresponding trixels might look on the surface of a sphere (right).

223

pute two cross-sections of the query's search cone: one

where the cone passes through the top of the slice, and
one where it passes through the bottom of the slice. These

two cross-sections give us, respectively, the interior and

exterior boundaries of the search cone as it passes through
the slice. We observe that:

• Data points from inside the interior boundary are

definitely inside the search cone.

• Data points from between the interior and exterior

boundaries are possibly inside the search cone, and
must be tested on an individual basis.

• Data points outside the exterior boundary are defi-
nitely outside the search cone.

Notice that the thicker the slice, the greater the dif-
ference between the interior and exterior boundaries, and

hence the more data points we can expect to have to test
in this region - which we shall call the "possibly-satisfy"

region during a query. To maximize query efficiency, we
must slice lip the hypercylinder so that areas of D' with

many data points are sliced thin, while areas of D ' with

very few data points may be covered by thick slices since

fewer points will need to be tested in those areas. As

revealed in Figure 8, we expect the representative points
for images to be largely concentrated in different "strata"

of D'. Unfortunately we cannot predict where all such

strata will eventually lie, due to the continuous launching

of new sources of image data.

As the number of points within a slice grows, eventu-

ally the density of points within that slice is such that ex-

cessive time is spent deciding whether to accept a point

within the "possibly-satisfy" region. At this time, the

slice must be split so that the collection of points within

the subslices is more homogeneous. A heuristic approach

to recognizing when this division should occur and where
the division should be made is given in Section 5.1.

4.2 The data structure design

For an overview of the hypercylinder's design, refer to

Figure 15. The top-level view is a binary search tree

(BST), whose branches discriminate between values of p
and whose leaves are the slices of D '. The data struc-

ture at each leaf is a sphere quadtree (SQT) [Feke84]

[Feke90], a special variation of a quadtree designed for

storing and retrieving points distributed on the surface of

a sphere. The branches of a SQT discriminate between

values of a and the leaves represent triangular regions of

the globe (Figure 16). The representative points of im-

ages are stored in the leaves of each SQT.

The sphere quadtree is a unique data structure in

that it models the globe without introducing distortions

Level 0_ Level 2

Levell_ _ Level3

Figure I6: How a sphere quadtree divides the globe into

triangular patches (called trizels). The higher the level

number of a trixel, the deeper in the tree it is, and the
smaller the area it covers.

or discontinuities, as other approaches such at latitude-

longitude based schemes do (see Section 1.2). Conceptu-

ally, it divides the sphere into twenty identical equilateral

triangles called trixels, where each trixel is a "bucket" for
data points. When a trixel reaches its threshold num-

ber of data points, it is split into four nearly equal-area

subtrixels. This subdivision is called refinement since it

produces smaller trixels which, like the pixels in an im-

age, can represent regions to a higher degree of resolu-

tion. As with most spatial data structures, refinement in

a SQT can continue indefinitely: the result is that areas

of the globe that are densely populated are more refined,

so query regions in those areas are more accurately rep-
resented by the higher resolution trixels in the SQT.

Since satellite orbits generally provide global coverage,

we expect the SQT for each slice to be fairly equally re-

fined over most of the surface of the globe, i.e., the SQT
is well balanced, and so spatial queries are handled with

similar efficiency regardless of their location. But since

satellite orbital paths are often designed to produce fully-

overlapping images at each pass over a location, a clus-

tering of the representative points occurs and results in
a tree that is 91obally well-balanced, but locally unbal-

anced. A means for overcoming this problem exists, and
is discussed in Section 7.1.

To ensure that the slices are split in an optimal man-
ner when they achieve their threshold number of data

points, a profile of how the data points are distributed

in each slice is maintained. These profiles are used as
heuristic devices to determine where the slices should be

224

subdivided.Their actual implementation is described in
Section 5.1.

5 A spatial data management

system

The primary motivation for designing an entire spatial

data management system for the remote sensing domain,

as opposed to just the custom-tailored spatial data struc-

ture described above, is that domain knowledge can often

be employed to improve the overall performance of any

data management scheme. For a remote-sensing catalog,
such knowledge encompasses:

* Modelinformation: what real-world entities and con-

cepts (observations, sensors, geographic regions, sci-

entific parameters, classification schema) are repre-
sented in the catalog, and what sorts of questions

may be asked about them by end-users. This is

mostly declarative information, intended for use by
both the end-users and the system. It allows the

users to ask the system about its contents, and it en-

ables the system to translate users' natural-language

and graphical queries into the system's internal rep-
resentation.

* Data structure information: what data structures

(e.g., the hypercylinder) exist in the database, under

what conditions they should be used (e.g., spatial

queries), and how data is distributed in them (e.g.,
the profiles mentioned in Section 4.2). This proce-

dural and declarative metaknowledge is used by the

catalog to construct plans for queries, to generate

the necessary calls to the catalog's underlying data.

base management system, and to optimize the query
plans as intermediate results are returned.

• Operational information: the performance of the
hardware devices over which the database is dis-

tributed, the anticipated system loads over the

course of a typical day or week, the types of queries

most frequently made, etc. This is largely declara-

tive information, used by the catalog in performing a
variety of tasks ranging from query optimization to

automatic data structure reorganization.

The spatial data management system makes use of such

information in its two supporting expert systems: the

Spatial Ingest Expert System and the Spatial Query Ex-
pert System, both of which are discussed below.

5.1 The Spatial Ingest Expert System

(SIES)

The primary function of the SIES is to govern the splitting

of the slices of the hypercylinder, ensuring that each slice
is divided so that dense strata of D' end up in thin slices,

with thick slices covering the sparser expanses of D'. As

mentioned in Section 4.2, each slice maintains a profile of

the current distribution of the data points in the slice. In

addition to this, the SIES incorporates information about

the expected future distribution of points. Both provide

a heuristic means of optimizing the hypercylinder as it is
being built.

The primary requirements for profiles are that they

must be easy to update during ingest, be implemented to

allow rapid calculation during splitting, be large enough

to adequately capture the distribution of points in a slice,

and be small enough not to incur a large storage overhead.
We have experimented with an approach based on incre-

mental sampling of the representative points as they are

stored in the slice: the profile consists of a small reservoir

of the p values of sampled points, and as each new point

is ingested there is a chance that one of the current ele-
ments of the reservoir will be replaced by the p value of

the new point. During splitting, the profile is analyzed

to determine where the p values are clustered, indicating

emerging strata in D'.

The profiles are supplemented in the knowledge base

by the bias list: a list of strata into which D' is expected
to be organized. The bias list is updated whenever a

new instrument is added to the knowledge base, and con-
tains the expected minimum and maximum radii of im-

ages that the instrument will generate plus an estimate
of how many images will be generated over the lifetime

of the instrument. Although the bias list can supply in-

formation on where a slice is best split (or even whether

to defer splitting a slice), its contents do not reflect the

actual state of the data structure, and thus neither it nor

the profiles are expected to provide maximal performance
in isolation.

The hypercylinder initially consists of a single slice cov-

ering all of p. When the number of points stored in any

slice reaches the threshold value for splitting, a strategy
for dividing the slice is formulated from one of several

alternatives, such as:

• Place the largest cluster into its own slice, and the
spaces to either side of this cluster into two additional

slices (Figure 17).

• Place the largest expanse of sparsely-populated space
into its own slice, and the spaces to either side of it
into two additional slices.

• Given an entry in the bias list whose minimum and
maximum radii fall within the slice and whose esti-

225

frequency

Figure 17: One strategy for splitting a slice, based on the distribution of points in the slice: this "fences in" the
largest cluster of points, putting it into its own slice.

Spatial
constraint

mm

Resolutionconstraint

Spectral _constraint
Instrument

constraint

Instrument
constraint

Radius

constraint

Figure 18: How non-spatial components of a query can place implicit spatial constraints. Only the shaded layers of
the hypercylinder must be searched.

226

mated number of images is high, place that range of

values into its own slice and the spaces to either side
of it into two additional slices.

• Split the slice so that equal numbers of points are in
each subslice.

The strategy chosen depends on factors such as how
definite the clusters are, how widely they are distributed,

and whether one cluster is significantly larger than the

others. Each fact lends weight to one or more of the

strategies during selection: these weights are then ad-

justed as more is learned about the performance of the
SIES under the real-world environment.

5.2 The Spatial Query Expert System

(SQES)

The SQES is actually a conceptual subset of the larger

Query Processing Expert System, a mostly-procedural-

knowledge base whose content is the model and data

structure information described in Section 5, and whose

purpose is the translation, optimization, and execution of

user queries. The SQES handles those parts of the task
that relate to spatial searches.

The first place the SQES is invoked is during the pars-
ing of queries with symbolic spatial components. In

natural-language and menu-driven queries, such compo-

nents might appear as the names of geographic, political,

or climatological regions on the Earth (or as the names of

stellar objects or constellations, depending on the catalog

type). The SQES translates these terms into geometric

region descriptions, possibly invoking external informa-
tion sources in the process, such as databases that house

geopolitical boundaries, or that store the names of as-

tronomical entities under different labelling schemes to

allow translation from one scheme to another (e.g. the

SIMBAD database).

Figure 18 shows how the SQES can optimize the spatial

search by inferring additional spatial constraints from the

user's query. The user's specification of desired ranges of
image resolution and spectral bands constrains the set of

instruments that might be sources of the desired data,

which in turn limits the possible sizes of images that can

be returned from the user's query, which in turn pin-
points the only slices of the hypercylinder that need to
be searched.

The SQES also assists in planning complex spatial

queries, where the order in which subparts of the query

are executed can play a dramatic role in decreasing pro-

cessing time. Consider the processing of a containment
query: as noted above, containment queries are best han-

dled as the intersection of a collection of point queries.

Throughout the system, computing the intersection of a

:::_5

Figure 19: The profile used by the SQES. Darker trixels

indicate that observations are more dense in those por-

tions of the globe.

group of unknown sets is performed in a strategic man-

ner: the members of the group are retrieved sequentially,

from smallest to largest estimated size, and the most re-

cenlly retrieved set is intersected with a running "result"
set. The system stops and returns the empty set a.s the

result of the intersection if any of the retrieved sets is the

empty set.

To allow the SQES to estimate the relative sizes of sets

returned by the components of a spatial query, yet an-

other profile is kept in the knowledge ba._e. Whereas tl,e

previously-discussed profiles represent the distributions of

the image radii, this new profile represents the distribu-
tion of the image centers on the globe, giving in effect the

"density" of observations around the surface of the globe.

Since it associates spherical locations with density values,

this profile is implemented as a small spherical quadtree

(Figure 19). When the SQES is confronted with a set of
query regions that must be ordered by expected content,

the area of each region is computed and multit>lied by its

average density from the profile to produce an estimate
of the number of data points in the entire region, and it.

is by this estimate that processing order is determined.

We intend to install similar profile-based approaches for

aiding the construction of query plans on top of all the

catalog's principle data structures.

6 Results

The spatial data handling system has been tested using

a portion of the metadata stored in the Pilot Land I)ata

227

System(PLDS)catalog.Approximately 3,000 records of

TM, MSS and AVHRR metadata were ingested from a

flat file into the hypercylinder's SIES via a C program
which extracted the appropriate fields for each image's

location, boundaries, and primary key. To assess the per-

formance and extendability of the SIES under different

implementation languages, it was written both in Quintus
Prolog and in CLIPS, an expert system shell developed

by NASA's Johnson Space Center and capable of being

linked into a C program and accessed via simple function

calls. The SIES sends the appropriate ingest requests

to the hypercylinder "server": a C++ program contain-

ing the hypercylinder data structure, accessible through a

TCP/IP socket on a Sun-4. All of the spatial search rou-

tines, as well as the profiles for the hypercylinder's slices,

were implemented in C++ and reside in the server. Query •
requests are sent to the SQES, a CLIPS/C module that

uses a small, array-based version of the SQT (called a
linear SQT) to store the SQES profile. The SQES per-

forms the necessary query planning and sends the various

partial spatial query requests to the hypercylinder server,
which keeps track of execution times for various tasks.

The spherical quadtree components of the system and

the supporting spherical geometry routines have been im-
plemented and tested independently inside the IIFS cat-

alog's database. The catalog uses the Smalltalk-based

GemStone DBMS, a commercial object-oriented DBMS •

available from Servio Logic Corporation, which is capa-

ble of invoking external C and C++ functions.

The rationale for initially implementing the full hy-

percylinder as an in-core data structure rather than in-

side the catalog database was twofold. First, it enabled

us to seamlessly integrate the hypercylinder with the

C++ spherical geometry objects (such as query regions)

and routines (such as grow(}) necessary for spatial query

handling. We found C++ to be an excellent program-

ruing platform for rapid data structure prototyping, and
are currently using Oregon C++ from Oregon Software, •
which conforms to the base ANSI documents for this lan-

guage and thus should produce highly portable code. Sec-

ond, initial implementation and testing in core enabled

us to take CPU-time measurements without concerning

ourselves with the I/O and CPU overhead that would be

introduced by interfacing with a DBMS.

The grow(} routine performed well for any given radius: *
the algorithm is O(n), where the inputs are the n vertices

of the query region R and a radius of expansion r, and the

outputs are the m vertices of grow(R, r), where n < m <
cn for a predefined constant c. Unfortunately, the grown

query region is almost always self-overlapping, and some •

necessary computations (such as determining whether a

point is inside grow(R, r)) take O(n _) to process using

our current algorithms. Removing the self-intersections

from a spherical region appears to be an O(n 2) operation

in the best case: we are therefore focusing our attentions

on developing more efficient algorithms for manipulating

the self-overlapping regions.

7 Future research

7,1 The hypercylinder

The hypercylinder data structure, designed to meet strin-

gent ingest and query requirements for large image cata-
logs, is nevertheless only one possible data structure and

is specifically designed for image data. We hope in the
near future to:

Produce additional spatial data structures cus-

tomized for efficient storage and retrieval of other

types of observations, such as observations in atmo-

spheric domains with additional spatial search crite-
ria such as "altitude."

Implement these data structures fully inside the cat-

alog's database, ensuring that the hypercylinder's
components are clustered so as to minimize page

faults during tree traversal.

Introduce tree compression techniques for the SQTs,

as per [Ohsa83], to eliminate the clustering problem
mentioned in Section 4.2.

7.2 The Spatial Ingest Expert System

In future implementations, we plan to expand the role of

the SIES in the spatial data ingest process. The SIES will

be empowered to:

Periodically survey the data structure for conditions

that would compromise efficiency, such as tree imbal-

ance. If such conditions are detected, the SIES must

determine how best to reorganize the data structure,

and notify the database administrator (DBA) of the

problem.

Estimate the amount of system resources that a re-

optimizing step will take, and, based on profiles of
system loads, suggest to the DBA the best times for
self-correction.

Maintain a history of major decisions affecting the
data structure: when a slice was split and why, when

the data structure had to be reoptimized and why,
etc. Alert the DBA if it is determined that some

subset of the rules has contributed to poor decisions.

7.3 The Spatial Query Expert System

Much of the spatial query optimization is intended to be

handled by the catalog's proposed Query Planning and

Execution Module (QPEM), in which the SQES knowl-
edge will reside. However, there are still spatial search

strategies unique to the SQES that have yet to be ex-

plored:

• Transfer more spatial query processing control from

the hypercylinder to the SQES. This would involve

maintaining a collection of density profiles, each cov-

ering a different slice of the hypercylinder. Spatial

queries would be handled and optimized indepen-

dently by each slice of the hypercylinder, based on

local profile information.

• Allow the user to specify different levels of spatial

query processing. Since many stages of query pro-

cessing in the data structure divide the tree into three

types of branches - definitely satisfies query, possibly

satisfies query, and definitely does not satisfy query

- the user can be given the power to trade precision
for execution time by deciding to either accept, re-

ject, or vigorously test the "possibly satisfies query"
branch.

8 Summary and conclusions

The research presented in this paper is intended to serve

as the foundation for a new generation of spatial data

management systems at NASA, tailored for the general

remote-sensing domain and robust enough to support ef-

ficient spatial searches regardless of the shape or location
of the user's area of interest.

The hypercylinder's two con trolling expert systems, the

SIES and the SQES, are as necessary as they are novel.

By using rule firings in a supervisory expert system to

activate data management tasks, the conditions under

which different data management strategies are employed

can be easily monitored, evaluated, and altered to fine-

tune system performance. This is a major step beyond

conventional catalog schemes, where inspection and eval-

uation of the underlying data structures are at best ex-
tremely difficult, and adjustment of the associated algo-

rithms is traditionally impossible without down-time for

code recompilation.

9 Acknowledgements

The authors would first like to thank William J. Camp-

bell for his continual support of IDM, and for the foresight

he has shared with us, which has helped make the IIFS

into what we believe to be the finest prototype in exis-

tence for NASA's future data management systems. In

addition, the research presented in this paper would not

have been possible without the inspiration provided by
three other researchers: Dr. George Fekete, who devel-

oped the spherical quadtree data structure, Nick Short,
Jr., whose introduction of planning-and-scheduling tech-

nology to the IIFS led to the concept of the SQES, and

finally Dr. Samir Chettri, whose expertise in statistics

has contributed to the algorithms underlying the SIES.

References

[Camp89]

[Campgl]

[Crompgl]

W. J. Campbell, S. E. Hill and R. F.

Cromp, "Automatic labeling and character-

ization of objects using artificial neural net-
works," Telematics and Informatics, Vol. 6,

Nos. 3/4, pp. 259-271, 1989.

W. J. Campbell, N. M. Short, Jr., L. H.
Roelofs and E. Dorfman, "Using semantic

data modelling techniques to organize an

object-oriented database for extending the

mass storage model," _2nd Congress of the
International Astronautical Federation, Mon-

treal, PQ, Canada, 1991.

R. F. Cromp, "Automated extraction of

metadata from remotely sensed satellite

imagery," Technical papers, 1991 ACSM-
ASPRS A nnual Convention Proceedings, Vol.

3, pp. 111-120, 1991.

[Dorf91] E. Dorfman, "Architecture of a large object-

oriented database for remotely sensed data,"

Technical papers, 1991 ACSM-ASPRS An-

nual Convention Proceedings, Voi. 3, pp. 129-

143, 1991.

[Feke84]

[Feke9O]

[Hinr83]

G. Fekete and L. S. Davis, "Property spheres:

a new representation for 3-d object recogni-

tion," Proceedings of the Workshop on Com-

puter Vision: Representation and Control,

Annapolis, MD, 1984.

G. Fekete, "Rendering and Managing Spher-

ical Data with Sphere Quadtrees," Proceed-

ings of the First IEEE Conference on Visu-

alization, IEEE Computer Society Press, Los

Alarnitos, CA, 1990.

K. Hinrichs and J. Nievergelt, "The grid file:

a data structure designed to support prox-

imity queries on spatial objects," Proceed-

ings of the WG '83 (International Workshop

229

[Ohsa83]

[Oost90]

[Same90]

[Short91]

on Graphtheoretic Concepts in Computer Sci-

ence), M. Nagl and J. Perl, eds., Trauner Ver-

lag, Linz, Austria, 1983.

Y. Ohsawa and M. Sakauchi, "The BD-tree
- a new n-dimensional data structure with

highly efficient dynamic characteristics," In-
formation Processing 83, R. E. A. Mason, ed.,

North-Holland, Amsterdam, 1983.

P. van Oosterom and E. Classen, "Orienta-

tioninsensitiveindexing methods forgeomet-

ric objects," Proceedings of the _th Intena-

tionai Symposium on Spatial Data Handling,

Vol. 2, Zurich, Switzerland, 1990.

H. Samet, The Design and Analysis of Spatial

Data Structures, Addison-Wesley, New York,

NY, 1990.

N. Short, Jr., "A real-time expert system and
neural network for the classification of re-

motely sensed data," Technical Papers 1991
ACSM-ASPRS Annual Convention, Vol. 3,

pp. 406-418, 1991.

23O

N92-23374
Data Exploration Systems for Databases

Richard J. Greene and Christopher Hield
Environmental Assessment and Information Sciences Division

Argonne National Laboratory
9700 South Cass Avenue * EID/900

Argonne, Illinois 60439-4832 _. _:

ABSTRACT

Data exploration systems apply machine learning techniques, multivariate statistical methods,

information theory, and database theory to databases to identify significant relationships among the
data and summarize information. The result of applying data exploration systems should be a

better understanding of the structure of the data and a perspective of the data enabling an analyst to
form hypotheses for interpreting the data. This paper argues that data exploration systems need a
minimum amount of domain knowledge to guide both the statistical strategy and the interpretation
of the resulting patterns discovered by these systems.

1 . INTRODUCTION

Data exploration systems apply machine learning techniques, multivariate statistical methods,
information theory, and database theory to databases to identify significant relationships among the
data and summarize information. The result of applying data exploration systems should be a
better understanding of the structure of the data and a perspective of the data enabling an analyst to
form hypotheses for interpreting the data. In a sense, data exploration systems are a tool of the
"scientific method": raw data is collected, laws describing the principal features of the data are
hypothesized and tested, and theories explaining the laws are hypothesized and tested by using the
theory to predict new information.

The benefits of data exploration systems can be significant. An analyst deluged with data can
greatly reduce the time needed to understand the meaning of the data, and the accuracy of data
analysis can be greatly increased. One might think of a data exploration system as a tool for
examining large and complex data for meaning that might normally go unnoticed.

The purpose of data exploration systems is to reveal structure (or equivalently "pattern") in data.
The basic operations of a data exploration system consist of describing, detecting, and searching
for structures. Ideally, the detected structure did not arise by chance and can be described in the

terms of the subject matter that produced the original data. The statements above naturally imply
issues regarding the role of domain specific (i.e., subject matter) knowledge in data exploration.

Collecting data is often much easier than transforming the data into useful knowledge. The result
is a lag between the time the data becomes available for analysis and the time knowledge can
emerge from an analysis of the data. This problem is aggravated in areas where data is collected

about phenomena to discover what factors affect performance and the relationships among the
factors. The goals of analysis are not only to improve future performance but also to use the data to
understand the underlying principles governing the observed behavior. The time and effort

required to analyze a large amount of data representing a variety of qualitative and quantitative
attributes is often quite prohibitive. It is from within this context that data exploration systems
have emerged.

A previous NASA application of data exploration in 1983 used the AUTOCLASS system for the
analysis of the Infrared Astronomical Satellite (IRAS) Data. For one year, the system sampled 94

231

spectral intensities and 2 celestial coordinates. In all, there were 5,425 records of data. Human data
analysts spent two years analyzing and classifying the data into a known, but inadequate,
taxonomy. In 1987 the AUTOCLASS program, a domain independent program based on
Bayesian statistics, was applied to the IRAS data [Denning]. The program ran for 36 hours and
created a new classification scheme and detected statistical patterns in the data that humans

interpreted as "discoveries". The overall response to the AUTOCLASS system, however, has
been reserved.

This paper presents our research into data exploration systems. The research is oriented toward
analyzing databases of historical performance data for patterns indicative of success and failure.
The findings presented here are applicable to any data exploration system. The first area discussed
is capabilities: which patterns are sought in the data, which techniques identify the patterns, and
how the data patterns are presented to a human investigator. Next, a methodology is discussed for
effectively applying a data exploration system (i.e., how do the system's characteristics affect how
it is applied). The research is a timely contribution to data exploration, as it identifies weak and
missing capabilities of these data discovery systems, and, in some cases, the recommendations

have been implemented and investigated.

This paper will show that induction and generalization over a database cannot be completely free of
domain knowledge. At a minimum, the data exploration system must account for the semantics of
numeric data. Next, classical statistical methods must be employed with great care because both
the statistical hypothesis and the method of data collection strongly affect the validity of induction
and the interpretation of the resulting generalization. Finally, the architecture of a data exploration
system reflects the state of knowledge about the problem domain : when little is known about the
domain being explored, the system is a loosely coupled set of tools supported by metadata. The
more known about the domain, the less exploration there is and the more predictable the analysis

becomes.

2. EXAMPLE of DATA EXPLORATION

Consider the following hypothetical database containing data regarding the past performance of a

pre-launch rocket fuel monitoring subsystem:

Table 1. Sample Database

Manufacturer Sensor Type Launch Time Number of Sensors Sensor Indication

ABC Corp. pressure morning 6 anomalies
XYZ Inc. temperature afternoon 12 clear
ABC Corp. density night 6 clear
XYZ Inc. volume morning 6 anomalies
XYZ Inc. volume morning 12 clear
XYZ Inc. lnessure afternoon 6 anomalies
ABC Corp. density night 12 clear
XYZ Inc. volume aftemoon 6 clem
ABC Corp. temperature morning 6 clear
XYZ Inc. pressure night 6 anomalies
ABC Corp. temperature morning 12 clear

For simplicity's sake, there are only eleven launch descriptions. Sensors are manufactured by
either ABC Corp. or XYZ Inc. The sensors measure one of four possible fuel-related factors: the
temperature, pressure, density, or volume. Launch times are categorized as either morning,
afternoon or night (after-dark) launches. Sensors are installed in batteries of six, with a maximum
of two batteries or twelve sensors. Finally, each data record is "classified" by its reading
indication. The sensor indication exhibits two possible readings : clear (i.e., a "successful"

232

reading) or anomalies (i.e., inconsistent sensor reports). This gives a possibility of (2*4*3*2) 48
different attributes to describe the environment of a sensor reading. The structure of the data is
shown in the decision tree in Figure 1. The attributes are shown as nodes and the edges are labeled
with the attribute values. The basis for classification is the indications "clear" and "anomalies",
shown as plus and minus signs. The ID3 induction algorithm was used to create the tree.

One hypothesis from this analysis is that the sensor type was the most important factor in
successful sensor readings, followed by the number of sensors, the manufacturer of the sensors,
and finally the external temperature. This observation implies that some launches had only this one
factor in common and that this one factor might have contributed significantly to the success or
failure of the sensor readings. In this example, the induction algorithm is identifying factors that
seem to be responsible for sensor success or failure. Specifically, pressure sensors tended to

account for anomalous readings while sensors monitoring the fuel temperature and density tended
to read successfully. This observation remains constant regardless of the values of the other
attributes. Likewise, sensors monitoring fuel volume with twelve sensors were likely to detect fuel
status correctly. However, when monitoring fuel status with six of XYZ Corp's fuel volume
sensors, the external temperature became a decisive factor. Morning launches were likely to
exhibit anomalous sensor readings while afternoon launches did not. Once the factors are

identified, we now must seek verification of the patterns found by generating an explanatory
hypothesis (i.e. a hypothesis that explains why the observed pattern is true and thus how to
encourage or avoid the pattern in similar situations -- a "lesson learned"). Hypothesis generation
is discussed later.

pressure temperature density volume

Q Q 0

XYZ Inc.

I

I
0

morning afternoon

Figure 1. Decision Tree Induced from Table 1.

233

The structure of the decision tree above can be automatically generated and may serve as a basis for
hypothesis generation. For example, why were pressure sensors such a determining factor? One
hypothesis is that the fuel pressure varies within the shuttle's rocket boosters between the sensors
located at the top of the booster and those at the bottom. This hypothesis could provoke a deeper
investigation. It may describe a significant pattern of sensor failure: launches with sensors from
different manufacturers, performed at various times of the day, using a different number of
sensors, all exhibited anomalous fuel status readings when using fuel pressure sensors. The type
of sensor was their only common factor. Likewise, why were morning launches subject to invalid
sensor readings? One factor might be the number of sensors. When the number was twelve,
readings in similar launches were successful. Thus, a possible explanation of the detected pattern
can serve as a hypothesis and lead to important yet subtle new lessons learned which the data
supports and yet, perhaps, goes unnoticed or unmentioned by any human analysts. One reason
patterns may be hard to detect is the sheer volume of data coupled with the large range of attribute
values. Without some form of statistical summary, how can an analyst extract as much
information as possible from such high volume data? The automatic inductive analysis described
above applies such analyses to the data and creates a discrimination tree as depicted graphically in
Figure 1. In the discrimination tree, an analyst can rank the attributes with respect to their ability to
classify sensor indications in order to determine which play significant roles in correlating the data
as success or failure. In short, the induction algorithm above answers the questions "which
attributes were the most significant" and "how are the data related?"

One can see the value of the analysis presented above. Given larger data sets with more attributes
and greater attribute ranges, the analysis task would become insurmountable without a tool such as
the induction algorithm. It is important to note that the induction algorithm will identify any pattern
supported by the data set. However, the pattern may be only coincidental or trivial. If the data
have cause/effect, correlations, or other useful information, then the induction algorithm will find it
and make the relationships explicit for use in hypothesis generation [Parsaye, Hoaglin].

3. CAPABILITIES of DATA EXPLORATION SYSTEMS

The main issue of data exploration systems is the type of regularities the system can detect. Each
system's approach can detect some regularities but is ignorant of other types of regularities. In
short, data exploration systems detect regularities that their designers deem important. The
domains of applications however, may exhibit certain types of regularity. To what degree can data
exploration systems remain domain independent and "generalized"? How should a "regularity" be
defined and how can we ensure that the assumptions for its detection are satisfied by the data in
question? And, once a pattern has been detected, how should the pattern be interpreted by the
user? Hamming's motto for those applying numerical methods also suits those applying data
exploration systems : the purpose of computing is insight, not numbers. The choice of computing
technique affects how we understand the results [Hamming].

As stated, each system's approach can detect some regularities but is unable to detect others. For
example, consider a data exploration system determining the relationship between two variables by
applying the chi-square test on a five-by-five contingency table of data values. For the sake of
example, assume there are only two real-valued attributes X and Y, and the technique is applied to
discover if these two attributes are related and, if possible, describe the relationship. Let the graph
of the actual values be the sawtooth wave shown in Figure 2.

234

/r \
X

I
I
r /

Figure 2. Chi-square test for attribute relationship.

The null hypothesis is that the variables are unrelated; i.e., each bin (or square) is uniformly
distributed with data points. To reject the null hypothesis, the observed values must be different
from the expected values appropriate to the desired significance level. Yet, as Figure 2 shows, the
points are uniformly distributed, as the bins contains approximately the same number of data
points. The chi-square test as described would not allow us to reject the null hypothesis. In other
words, the attributes are judged to be unrelated because, in this case, the data exploration system
fails to detect periodic behavior. If the amplitude or frequency of the wave is varied, the dynamic
behavior of the data exploration system reaches critical points where the system can detect a
regularity using the chi-square test, but as the amplitude or frequency of the wave crosses critical
thresholds such as the one depicted in Figure 2, no relationship is detectable even though the
essence of the regularity remains the same. It appears as though the phenomena under examination
experience moments of chaos when, in fact, the chaotic behavior is inherent in the detection
technique.

As this example suggests, the capabilities of the data exploration system should match the features
of the explored context or the user risks "discovering" artifacts of the discovery mechanisms
themselves and, thus, inducing invalid generalizations. Yet, matching a technique to problem
context can be paradoxical: isn't one of the purposes of data exploration to discover precisely
these descriptive features?

Nevertheless, several capabilities can be enumerated. First, the data exploration system should
offer a variety of techniques to detect potential regularities and constrain their application
appropriately. Without this capability, one cannot be sure that the regularities detectable are the
only ones in the data. Multivariate statistical methods offer such a variety and, in addition,
constrain when a method applies. Data exploration tools often incorporate many of these
sophisticated methods but fail to detect when the techniques do not apply. Thus, the results of
applying these techniques can be invalid yet appear as authoritative. The problem of invalidity is
discussed in Sections 5 and 6.

Second, the data exploration system should support a flexible and appropriate strategy for data
exploration. A statistical strategy is a formal justification for the selection, ordering, and
application of techniques made during the course of data exploration. The data exploration system
should in some sense act as an intelligent practitioner of data analysis [Hand]. Some systems

simply providea "grabbag"of exploratorytechniquesthattheuserselectsandappliesadhocand
without a sensiblestrategy.The worthof hypothesesresultingfrom suchmethodologyshouldbe
suspect.Thenextsectionaddressesthis topicin moredetail.

Next,thedata exploration system should permit exploration sessions to be "frozen" and resumed.
Without this capability, analysis must be conducted in a single sitting. However, an exploration
strategy may induce a potentially complex series of probes into the structure of the data and it may
not be practical to perform these operations in a single sitting. Furthermore, the system should
record the lines of exploration and provide a "replay" capability of the last n operations.

Fourth, the data exploration system should provide a facility for semantic data modeling, as the
semantics of the data do affect data analysis. Without this capability, two situations can arise: the
relationships and generalizations discovered may be invalid or the system may fail to pursue a
semantically rich relationship because two semantically related pieces of data are treated as
unrelated by the system. A potentially rich semantic link will be lost. For example, the system can
formulate relationships between two numerical variables if these numbers are related in the
modeled domain; e.g., pressure and temperature. The importance of data modeling cannot be
overemphasized in data exploration and is discussed in more detail in section 6.

Finally, there is the issue of missing or noisy data. How should this data be incorporated into the
exploration process? Should there exist a three-valued logic for data values: unknown, not
detected, or present? Similarly, some data may not be noisy at all, and other data must be
smoothed before analysis. Clearly, a theory of data exploration should address these issues.

4. CONTEXT of DATA EXPLORATION

Next, how does a data exploration system support the analysis process? Some systems such as
BACON use empirical numerical data directly to induce a law supplemented with theoretic
variables that both simplify the representation of the law and serve as a conceptual aid [Langley].
For example, BACON induced Black's heat law and the concept of "specific heat". Other systems
such as IXL operate more interactively by placing a human in-the-loop [Parsaye]. In this case, the
data exploration system is more an integrated set of loosely-coupled tools. BACON gives the user
an end result while IXL gives the user a set of intermediate results. The style of investigation
imposed by the data exploration system should be appropriate to the problem under investigation.

At best, the exploration tool should guide the user in selecting an exploration strategy and then
ensure that the data satisfies the assumptions underlying the selected mathematical techniques.
Given that the data represents some aspect of reality, the strategy for seeking out implicit or hard-
to-perceive relationships should make sense within the specific context of exploration.

The data exploration environment can be categorized as either "supervised" or "unsupervised". In
a supervised learning environment, a human analyst supplies the exploration tool with metadata, or
information that describes the various data attributes that are found in the data records. This gives
the exploration tool knowledge of the environment the data is supposed to describe. With this
data, an exploration tool can determine the appropriate set of tools that it can validly apply to the
data. An unsupervised learning environment exists when no metadata is supplied. In this case the
exploration tool must examine the data using the widest variety of tools, though the validity of the
application of these tools to the database is up to a human analyst to determine. This mode of
learning is valuable when minimal knowledge concerning the nature of the data is available.

Consider, for example, a database containing numerical data attributes. If nothing is known about
this data, a numerical induction system such as BACON would apply its analysis heuristics in an

attempt to determine wheher the terms are numerically related. This will very often provide an
analyst with valuable information regarding the relations between terms. As stated earlier,

2.716

BACON has discovered and "rediscovered" many valuable numeric laws. However, if the data
represents attributes such as a zip code, a year-of-birth, a social security number, or a yearly
income, any numerical relationships discovered that relate these terms has no meaning in the real
world. The purpose of data exploration systems is just the opposite: to discover trends that can be
used to make generalizations or predictions about the real world. Even when the numerical data
found in a database does lend itself to numerical analysis, the nature of these "measurements" must
be known in order to perform valid analyses. This is discussed in more detail in Section 6.

Data collection issues are key to data exploration as well. In many instances, large volumes of
historic data exist that can be readily applied to data exploration. However, many situations exist
in which data is constantly being collected. Consider the amount of data that is constantly being
transmitted regarding the status of the many subsystems aboard the space shuttle. If a data
exploration system is to be used to detect patterns and correlations for one-time-only analysis, then
this is not an important consideration. Other applications however, will require the constant
digestion of data streams that describe a real-time environment. A data exploration tool should be
able to analyze a fixed sample or to accept incoming data and continuously modify the detected
patterns to reflect the current information (i.e., sequential analysis strategy). Without this ability,
an accurate determination of the significance of the various attributes being collected cannot be
made.

5. INTERPRETING the RESULTS of DATA EXPLORATION SYSTEMS

Data exploration systems can serve as a powerful instrument enabling an analyst to perceive
structure in a seemingly dense forest of data. Ideally, the derived perception of the data reflects
relationships and generalizations actually present and not due to chance. The data exploration
system merely enhances the analyst's perception much the same way as a telescope enhances an
astronomers perception. This section outlines the technical difficulties in achieving this goal. The
crux of the matter is validity. Under what conditions might a data exploration system offer invalid
results? The thesis is stated simply: the interpretation of results can be complex because a statistical
strategy and the semantics of numerical data can strongly influence the interpretation of the results.

For the sake of illustration, consider a simple hypothetical database adapted from [Berger]
containing data regarding two identical subsystems serviced by different maintenance teams (i.e.,
paired observations). It will be shown that the statistical strategy can be subjective and can
strongly influence the discovered structure. Thus, a data analyst cannot interpret the results without
knowing precisely the details of the statistical strategy used to discover the patterns. The
conclusion is that the consumer of the data should control the strategy of analysis, not the data
exploration tool. Assume that before a launch, each subsystem is assigned a maintenance team at
random and after the flight the performance of the subsystem is evaluated. Next to the paired
observation is the outcome stating which subsystem performed best (for the sake of clarity, assume
ties are not allowed). Let attribute labels 1 and 2 represent the subsystems, and let their values
represent which of the maintenance teams, A or B, serviced the respective subsystem. Attribute 3
represents the post-mission evaluation of which subsystem/maintenance team performed best. The
database appears in Table 2. Attributes 4 and 5 are discussed shortly.

Table 2. Sample Database

1 2 3 4 5

A B A 42 30
B A B 39 41
A B A 39 23
B A A 43 33
A B A 40 25

237

A B A 46 40
A B A 44 35
B A B 37 39
A B A 54 60
B A A 52 54
A B B 42 40
A B A 52 54
B A A 50 50
A B A 45 38
A B A 47 44
B A A 52 54
A B B 38 39

The first issue regarding the interpretation of the results is very complex: what are the assumptions
of the statistical strategy, and given that these assumptions hold for the data, how do these
assumptions influence the interpretation? To illustrate the effect of exploration technique on
interpretation, two separate statistical viewpoints are assumed and their implications examined.
First, consider the view of classical statistics. Classical statistics assumes a model responsible for

the data prior to examination, and that any deviation from the assumed model is caused by chance.
Given the sample database, consider the following strategies:

• Strategy 1 assumes that the data is generated by a binomial distribution with no
difference between the maintenance teams. The probability of the outcome of 13
favorable outcomes for Team A is 0.182 and the P-value is 0.049. One is

tempted to assume that there is no difference in maintenance teams and that the
pattern of 13 favorable outcomes for team A is due to chance.

• Strategy 2 assumes that the data is generated by a negative binomial using a
sequential sampling plan: (i.e., data was collected until both Team A and Team B
both had 4 favorable outcomes). It so happened that the last favorable outcome
for Team B occured on trial 17. In this scenario the probability of the pattern of
13 favorable outcomes for Team A is 0.0085 and the P-value is 0.021. The

conservative judgement is that the pattern in favor of Team A is not due to chance.
The "discovery" is that Team B needs training.

What is the cause of this ambiguity? The ambiguity is caused by assuming a statistical hypothesis
that in turn results in P-values for values that are unobserved yet theoretically possible.

Which of these interpretations is true and how can an analyst communicate the sampling plan and

assumptions to the data exploration tool? More importantly, does the data discovery tool
accommodate such metadata prior to exploration? From the above example, one can conclude that
the sampling plan and assumed distribution strongly influence the interpretation of results. These
assumptions are inherent in the classical statistical approach. The two distributions are sketched in
Figure 3 for comparison. The leftmost distribution results when a coin is flipped 17 times and the
probability of the number of heads is calculated. The rightmost distribution results when a coin is
flipped until four tails appear, the last tail occurring on toss 17. The P-values are also indicated in
the shaded areas; these indicate the "confidence level" of the null hypothesis.

238

0.20

0.15

0.I0

0.05

0.00 0

0.30

_ 0.25
0000

t,-,,,¢

¢;c;
0.20

0.15

0.10

0.05

8 9 1 7 0.00

P-Value 0.049

8

P-Value
16 3 0 --4_

0.021

Figure 3. Two Statistical Models for Sample Database

The role of P-values is fundamental in the classical approach to data analysis, yet it is often
misunderstood. P-values consist of both observed data and hypothesized (unobserved) data; these
represent the probability that the null hypothesis is falsely rejected assuming that the null
hypothesis is true. P-values represent the probability of obtaining data that casts at least as much
doubt on the hypothesis as on the observed data itself. However, the P-values do not indicate the
truth of the null hypothesis in the face of the data. P-values essentially give indirect evidence
against the null hypothesis.

An alternative way of exploring the data is a Bayesian approach. On the surface, the Bayesian
approach seems more appropriate to data exploration. First, the Bayesian approach allows the
formal integration of prior knowledge into the hypothesis generation process. Next, the Bayesian
approach permits sequential sampling and the accumulation of evidence. The ability to accumulate
evidence and make decisions when the evidence becomes strong enough is appropriate to many
experimental engineering analysis problems. The classical approach requires sample sizes to be
specified in advance and the sampling conditions to remain uniform for the duration of the
sampling. Then the data is analyzed. However, this type of sampling and decision regimen may
not be suitable for the analysis of real-world, mission-critical operations. More appropriate for
hypothesis generation is the integration of the best engineering judgement into the analysis of the
arriving data and making the best decisions possible given the data at hand. Ideally, the set of
hypotheses can be scored and the most probable hypothesis selected based on direct evidence plus
prior knowledge. Classical data exploration techniques are of limited value in this situation.
Bayesian techniques on the other hand, directly estimate the truth of a hypothesis given the data. In
short, the Bayesian approach addresses itself directly to the issue of how degrees of belief are to be
altered by the observed data. Contrast this approach with the concept of P-values, which account
for unobserved data. Bayesian techniques are unaffected by unobserved data and thus permit a
sequential sampling plan; in addition Bayesian techniques are not invalidated by nonuniform
sampling conditions or affected by experimental design. Data exploration in mission-critical

contexts can benefit from a Bayesian approach, yet few data exploration systems fully
accommodate this approach.

239

6. HOW the SEMANTICS of NUMBERS AFFECTS INDUCTION and
GENERALIZATION

As discussed earlier, a key issue in data exploration is the amount of domain specific knowledge
necessary to apply mathematical pattern detectors. This again touches on the nature of supervised
learning. A tentative answer is that data exploration does require at least a "modest" amount of
semantic metadata. To see this, consider the two integers 20 and 45. If their mean value is to be
used for statistical purposes, one might use the arithmetic mean to obtain an average of 32.5.
However, if these integers represent a "rate" such as kilometers per hour, then the mean value
should actually be 27.77 (assuming an equal weighting). When determining the mean of rates
involving unit ratios (miles/hour, ohms/meter, etc.), the harmonic mean must be used to determine
the true mean. For example, if a vehicle goes one kilometer at 20 km/hr and the next kilometer at
45 km/hr, the average velocity is 27.77 km/hr, not the 32.5 k/hr that the arithmetic mean would
indicate. Now, if this mean is to be used to calculate other values, such as times of arrival given
certain time intervals, this difference in velocity will quickly cascade through further calculations,
most likely unnoticed. Though simple, this example demonstrates that all numeric data cannot be
handled uniformly. A data exploration system must have some metadata describing what the
numbers represent.

One important shortcoming of most data exploration systems is that numerical values are treated
uniformly. Numbers represent some aspect of reality and the results of numerical operations are
assumed to make true statements about this reality. However, our research indicates that, in
general, numbers cannot be treated uniformly and mathematical operations cannot be applied
without empirical justification. Specifically, if a user cannot communicate the semantics of
numerical values to the data exploration system, the corresponding results may be suspect.
"Measurement theory" offers important design guidelines detailing the qualities of measurements
that can be used to avoid the above problems.

Consider attributes 4 and 5 in the sample database in Table 1. If numerical values are treated
simply as "numbers", then the pattern "when attribute 3 = 'A', then the value of attribute 4 =
2/5(attribute 4) + 30" might be detected. Is this valid? At first glance it seems that, indeed, this
generalization is true. Yet further examination demonstrates that the validity of this generalization
depends on the semantics of the numbers themselves. First, assume that the numbers represent the
payroll numbers of the two supervisors of Team A and Team B. The generalization in this case is
probably senseless. However, if the two attributes represent outside temperature and the
temperature of a subsystem, the generalization is valid only within the scale on which the
temperatures were measured. In other words, the generalization is invalid if, in the future,
temperature is measured in Fahrenheit instead of Centigrade or vice versa. The co-ordinate system
itself induced the generality. If we change the co-ordinate system, the generalization disappears.
However, if the attributes represent the weight of two related subsystems, then the generalization is
valid regardless of the co-ordinate system in which the original measurements were made. The
reasons for these assertions are grounded in measurement theory.

Briefly, measurement theory is a branch of mathematics that formalizes the practice of associating
numbers with objects and empirical phenomena and the interpretation of those numerical values.
Numbers can take four different meanings, and these meanings constrain the types of operations
that result in valid application. First, a number can be "nominal". This means the number
represents a qualitative symbol such as a name. In the example above, employee number is
nominal. Next, a number can be "ordinal". This means the number represents a location in a
ranking but not magnitude (e.g., the object ranked fourth does not necessarily have twice the
ranked property as the item placed second even though (2)*2 = 4). Third, a number can be a
"ratio" measurement. This means that the number represents a measurement with an arbitrary scale
and origin. In the example above, temperature is such a measurement. Note that if temperature X
is twice temperature Y in Fahrenheit, this is not necessarily true if the numbers are converted to

240

Centigrade.Finally, a number can represent an "interval" measurement. This means that the
property measured has a "natural" absolute origin. In the example above, weight is such a
measurement because at zero G, the object measured has no weight regardless of the specific
measuring scale. A table of allowable transformations is given below.

Table 3. Valid Operations Based on Measurement Type

T vge of Measurement Admissible Transformation F,mam

nominal(symbolic) any 1-1 transform numbers used as labels
ot,dinal x >= y iff f(x) >= f(y) preference rankings
interval f(x) = ax + b temperature in C or F
ratio f(x) = ax, a > 0 weight

Table 3 indicates that the generalization "X is cY where c is constant" is an invalid operation on
interval measurements such as temperature because generalizations induced in one temperature
scale do not necessarily hold in another scale. The admissible transformations for a measurement
type are the "litmus test" for the validity of an inductive generalization. See the Appendix for proof
of this assertion.

The interested reader is referred to [Roberts] for details, implications, and formal proofs about the
validity of numerical inferences. The importance of measurement theory to data exploration cannot
be overstated. This theory shows that numerical values cannot be treated uniformly, because the
results can be invalid. On the positive side, measurement theory also indicates that data exploration
systems need not possess a great deal of domain specific knowledge. All that needs to be insured
is that the appropriate transformation is applied to a numerical value. If the dictums of
measurement theory are obeyed, then the opportunities for invalid generalization are reduced.

7. INTEGRATION of SYMBOLIC and NUMERIC DATA

A related issue is the integration of symbolic and numeric data. Most systems use one type of data
exclusively and fail to exploit the information carried by both types. Yet, many databases contain
both types. A single coherent computational framework is needed for using both qualitative and
quantitative data in searching for potentially meaningful patterns. One framework for integrating
both symbolic and numeric information is to cluster the numeric information, assign symbolic
cluster names, and use the cluster names in an algorithm such as ID3, which discovers low entropy
attributes with respect to a given taxonomy. This technique was tried on our prototype system
using a simple Euclidean distance measure and the maximin-dz'stance clustering algorithm. The key
issue in this approach is to make an informed guess about the numeric data and select a suitable
distance measure. Once again, a modest amount of domain-specific knowledge must be applied. If
one knows nothing at all about the data as shown in this section, the results of any exploration
approach must be suspect.

Cluster analysis organizes data by uncovering underlying structure in data either as a grouping or a
hierarchy of groupings. The analyst can use the grouping as confirmatory evidence of suspected
structure or as fertile ground for further experimentation to explain the discovered taxonomy
[Everitt]. The AUTOCLASS program mentioned in the introduction is based on cluster analysis.
An important theoretical consideration for employing cluster analysis is that it is free of the
ambiguities induced by P-values and other statistical assumptions previously discussed. Thus,
cluster analysis can serve as both a remedy for the problems of classical or Bayesian statistical
methods or as an additional validation technique to supplement these methods. The database of
Table 2, when clustered, appears in Figure 4:

241

attribute5

• A judged better

". B judged better

• attribute 4

Figure 4. Clustering

One hypothesis from the clusters might be that Team A actively wains, while Team B is shamed
into training also. When Team A does not train, Team B relaxes and then wins on talent alone.

There are several issues involved with cluster analysis. First, how are clusters defined? Exactly
what shapes and distances define a cluster are domain dependent parameters and are often
unknown before analysis. Next, research suggests that clustering without some domain knowledge
is still a weak technique. The reason is that clusters are defined by distance measures that
themselves have meaning within a domain. The Euclidean distance is just one example of a
potential distance measure useful in clustering. Finally, which attributes should serve as the
clustering attributes? These all depend on the goals of the analysis. Consider the different ways of
clustering a deck of cards: one may form clusters based on numeric value, suit, color, etc. The
data exploration system should provide a mechanism for defining distance measures and allowing
the user to search for structure based on different grouping criteria.

Our experiments use clustering and distance measures not only as stand alone techniques (as in the
example) but in data reduction as well. Clusters of numeric data are tagged with names, and the
names serve as an additional attribute that represents and classifies a group of the numeric values.
Then a symbolic induction technique such as ID3 finds those factors correlated with the cluster. A
similar technique is used for curve fitting. When a set of numeric data is fitted with a curve, the
coefficients of the curve are compared with the curves fitted to related data. Using the Chi-Square
Test, a distance measure is defined, and a determination regarding the two sets of numeric data is
made. If the data are close, they are grouped within the same cluster. The same maximin
algorithm can be applied with a different distance measure.

8. CONCLUSIONS AND RECOMMENDATIONS

Our research suggests several conclusions. First, data exploration is based on the detection of
regularities in data. Therefore, the data exploration tool should provide a variety of detection
techniques for the types of regularity likely to occur in the data. Without this, the system is blind to
potentially important and characteristic patterns. Next, symbolic data patterns can be detected
using a variety of statistical techniques. Various entropy measures have been shown to be useful
in this endeavor. Decision trees constructed from the output of algorithms such as ID3 based on
entropy measures offer a visual representation for the structure of the data. Third, data exploration
on numeric values is very complex due to the semantics of numbers. Care must be taken to avoid
transforming the data in meaningless ways and deriving invalid patterns on the data. Finally, more
research is needed into integrating symbolic and numeric data into a coherent framework for data
exploration.

Several recommendations are made for future directions for research. Some enhanced data

exploration techniques have already been implemented and are undergoing experimentation.

249.

Experiments are underway to integrate symbolic and various types of numeric data into an overall
methodology for data exploration. Promising techniques include the incremental integration of
domain-specific knowledge into cluster analysis and curve-fit analysis.

The role of conjecture in the discovery process is well-recognized [Polya]. As stated previously,
data exploration tools can support the formulation of a conjecture by examining the data and
elucidating the "structure" of the data. Structure in the sense used here means "regularity" or
generalization exemplified by the data. Regularities are described and hence detected
mathematically. The user must verify that the assumptions underlying the application of the
mathematical technique are satisfied, and if so, then the data exploration tool can perform a great
deal of statistical analysis and uncover the structure of the data. Certainly, powerful tools such as
multivariate statistics and information theory can provide the data exploration tool with a sturdy
vehicle for exploration.

However, a paradox arises. On one hand, an analyst applies a data exploration tool because so
little is known about the data. But, on the other hand, the very exploration techniques require a
certain amount of knowledge about the data before the results can be validated. In other words, if

a data exploration tool presents us with a host of conjectures, what can be said about the potential
validity of the conjectures, all else being equal? Ideally, one does not need a tool to manufacture
blind alleys, smokescreens, and distractions for the analyst.

What is needed is an incremental approach to integrating domain knowledge as it is acquired into
the exploration process. This paper has shown that induction and generalization over a database
cannot be completely free of domain knowledge. At a minimum, the data exploration system must
account for the semantics of numeric data. Next, classical statistical methods must be employed
with great care because both the statistical hypothesis and the method of data collection strongly
affect the validity of induction and the interpretation of the resulting generalization. Finally, data
exploration systems can be structured in two ways: when little is known about the domain being
explored, the system should be a loosely coupled set of tools supported by metadata. The more
known about the domain, the less exploration is needed, the more predictable the analysis
becomes, and the more domain specific knowledge should be infused into the analysis process.
The tool supporting the analysis should be flexible enough to accommodate a variety of data and
analysis strategies.

APPENDIX

Proof that the generalization of f(a) = cf(b) is invalid for interval measurements (e.g., mass,
temperature on F or C, etc.) where c > 0.

Proof: Assume f(a) = cf(b) for some a,b,c where f(x) is a quantity assigned to x on an interval
scale. The generalization is valid iff it is invariant under all admissible transformations. Since f(x)
is assumed to be an interval measurement, let g(x) = kx + b where k,b > 0, the general admissible
transformation for interval scales. If f(a) = cf(b), then (g*f)(a) = c[g*fl(b) --> g(f(a)) = c[g(f(a)].
But, k f(a) + b <> c[kf(x) + b]. Hence f(a) = cf(b) is an invalid generalization in an interval scale.
Note, however, that if b = 0 (i.e., the measurement type is ratio such as weight), then the
generalization is valid.

REFERENCES

Berger, J.O. and Berry, D.A. (1988) Statistical Analysis and the Illusion of Objectivity. American Scientist, 76(2)
Denning, P.(1989) Bayesian Learning, American Scientist, 77(3)
Everitt, B. Cluster Analysis. Wiley and Sons, New York, N.Y., 1974
Hamming, R.W. Numerical Methods for Scientists and Engineers. Dover Publications, Inc., New York, N.Y.,

1973

243

Hand, DJ. Emergent Themes in Statistical Expert Systems in Knowledge, Data, and Computer-Assisted Decisions,
Springer Veflag, Berlin 1989

Hoaglin,D.C., Mosteller, F.P., and Tukey, J.H. Exploring Data Tables, Trends, and Shapes, Wiley and Sons,
New York, N.Y., 1985

Langley,P. and Zytkow, J.M. (1989) Data-Driven Approaches to Empirical Discovery.ArtbScial Intelligence 40
Parsaye, K. ,Chignell, M, Khosafgarian,S., and Wong, H. Intelligent Databases, Wiley and Sons, New York, N.Y.,

1989

Polya, G. Mathematical Discovery, Wiley and Sons, New York, N.Y., 1981
Roberts, F.S. Measurement Theory Addison-Wesley, Reading, Mass., 1979

244

N92-
Logic Programming and Metadata Specifications

Antonio M. Lopez, Jr., Ph.D.*
Mathematical Sciences

Loyola University Box 51
New Orleans, LA 70118

(504) 865-3340
e-mail: lopez@loynovm.bitnet

Marguerite E. Saacks, Ph.D.*
Computer Science Department

Xavier University
New Orleans, LA 70125

(504) 483-7456
e-maih saacks@comus.cs.tulane.edu

!
i

• . / . .

3 5

:7 rL:-- "

f

Abstract

Artificial intelligence (AI) ideas and techniques are critical to the development of intelligent
information systems that will be used to collect, manipulate, and retrieve the vast amounts of space
data produced by "Missions to Planet Earth." Natural language processing, inference, and expert
systems are at the core of this space application of AI. This paper presents logic programming as
an AI tool that can support inference (the ability to draw conclusions from a set of complicated and
interrelated facts). It reports on the use of logic programming in the study of metadata
specifications for a small problem domain of airborne sensors, and the dataset characteristics and
pointers that are needed for data access.

Introduction

The National Aeronautics and Space Administration (NASA) is on the verge of a tremendous
data explosion. By the end of this decade, the Earth Observing System (EOS), just one of
NASA's projects, is expected to produce several terabytes of archival data each week. These data
will be in a variety of formats and will "belong to" a variety of Earth and Science disciplines.

Although mass storage device technology, which makes megabyte data files practical and
affordable, is keeping pace with current industrial and business demands, new innovative
software systems will be required to organize, link, maintain, and properly archive the EOS data
that is to be collected for the EOS Data and Information System (EOSDIS) (Dozier, 1990).

Software problems associated with organizing, structuring, and managing these very large
multi-format data files for efficient and timely access and update are being addressed. Artificial

intelligence tools, techniques, and concepts offer great potential in solving many of the software
problems that have already surfaced.

The Intelligent Data Management 0DM) project team at NASA's Goddard Space Flight Center
(GSFC) is developing a prototype system for managing the terabytes of satellite imagery data that
EOS is expected to produce. The research and development incorporates a number of

* This work was begun when the authors were 1991 NASA/ASEE Summer Faculty Researchers in the Information

Systems Division of the Science and Technology Laboratory at the John C. Stennis Space Center in Mississippi.

OR1GINAL PAGE IS

OF POOR QUALITY

state-of-the-art AI software methodologies in an effort to provide new insights and tools for
building future intelligent information systems (Campbell and Cromp, 1990). Published works
by members of the IDM project team discuss a high-level expert system for declarative and
procedural knowledge acquisition (Chomp, 1988), an intelligent user interface for browsing
satellite data catalogs (Cromp and Crook, 1989), the application of connectionism to query
planning and scheduling (Short and Shastri, 1990), and an architecture for a large object-oriented
database (Dorfman, 1991). At the heart of the work that is being done at GSFC is the Intelligent
Information Fusion (IIF) concept, a structured approach to implementing the management and
access to data, metadata (useful information about the data), and supporting information and
knowledge (Roelofs and Campbell, 1990). An essential clement of IIF is the semantic and
knowledge-based representation that captures the essence of the data domain at all levels of
knowledge representation, from the highest class structure, to the intermediate metadata, to the

lowest level of data granule. The overall concept of implementing an Intelligent Information
Fusion System (IIFS) for spatial data management has been described by Campbell et al. (1990).

An AI Tool

Logic programming is an outgrowth of the research that was done in the mid-1960's on
automated inferencing and theorem proving. A logic program is constructed by describing what is
true in a particular problem domain. It is equivalent to a set of logical axioms. These axioms are
facts and rules that describe objects and the logical relationships between them. The execution of a
logic program is equivalent to a constructive proof of a goai statement from the axioms, and it is

carried out by an application-independent inference procedure (Genesereth and Ginsberg, 1985)
embedded within the particular programming language implementation.

Logic programming provides an efficient mechanism to integrate data, metadata, and control

into a domain-specific knowledge environment (Kerschberg, 1990). Recently, logic
programming languages such as LDL (Naqvi and Tsur, 1989) and LOGIN (Ait-Kaci et al., 1990)
have been designed for efficient access to very large collections of data and for using concepts
such as inheritance. Both of these languages are extensions of PROLOG (PROgramming in
LOGic), the flagship of logic programming languages.

PROLOG has been shown to be a useful AI tool in a wide range of applications such as expert
systems (Moller-Jensen, 1990), relational databases (Lucas, 1988), knowledge representations
(Goyal, 1989), and natural language processing (Tanaka, 1988). More recently, attention has
been drawn to PROLOG as a specification language (Denney, 1991), and for use in declarative

testing and debugging (Yan, 1991). It is these two aspects of this logic programming language
that we intend to exploit in metadata specification.

The Theory

Metadata provides systems such as EOSDIS and IIFS with a knowledge model that captures
the data semantics (i.e., objects, properties, etc.) and the knowledge semantics (i.e., heuristics,
scripts, etc.) of a particular domain. The truly creative and most difficult step in the development
of metadata is the construction of an acceptable formalism from an intuitive understanding of the
data domain, using design tools such as semantic networks, frame-based representations, and

object-orientations (Cercone and McCalla, 1987). In specifying the metadata, the intelligent
information system developers claim to know: (1) what knowledge to represent in an application,
and (2) how to reason with that knowledge. Regardless of the tool used to specify the metadata,
the question is, "Does the metadata provide an accurate knowledge model?"

In education theory, the deductive model of inquiry treats theories as: (1) a set of basic facts

246

and principles, and (2) a deductive logic that allows explanations and predictions to be derived.
McEneaney (1990) has shown that there is a clear connection between theories in the deductive
model of inquiry and logic programming. Logic programs can be used not only to test the validity
of theoretical arguments, but also to make substantive contributions to theory development and
revision. Logic programs can also be used to develop a metadata specification, because metadata
is a theory about the relationships that exist among the data.

PROLOG can be used as an AI tool to construct and test metadata specifications given in
terms of a semantic network, a frame-based representation, or an object-orientation.

Specifications written in PROLOG are executable. Because PROLOG makes no distinction
between data and program, it is a powerful tool for simulating the learning needed in intelligent
information systems. In addition, this approach allows the developer to "ask questions" of the
metadata, derive answers, and change the metadata if the answers are unacceptable. Through an
iterative process of generate and test, the metadata specifications and the PROLOG program must
eventually produce an accurate knowledge model.

The Application

NASA's John C. Stennis Space Center (SSC) has over the years collected data obtained by
using the Thermal Infrared Multispectral Scanner (TIMS), and the Calibrated Airborne
Multispectral Scanner (CAMS). The analog tapes produced by these sensors on different
missions are stored in SSC's data holdings and digitized for Earth Scientists. In anticipation of
EOSDIS and IIFS, the Information Systems Division at SSC was interested in developing
metadata specifications for their TIMS and CAMS data sets.

An initial investigation revealed two important points. First, the information that was stored
on the tape headers was not enough to support the types of queries that scientists in the Earth
Science Division would want to make. For example, scientists suggested queries that needed
information found on the Mission Flight Request Form, a five page document with possible
attachments. The Mission Flight Request Form is not stored electronically with the data that was
obtained by the mission. Second, people's understanding of metadata varied. Some proposed
tables that could be implemented using a relational database management system; others produced
the NSSDC Directory Interchange Format Manual (Version 3.0, December 1990) and indicated
that a directory entry consists of collections of "metadata" fields; and yet others knew the purpose
of metadata, but found it difficult to specify.

We decided to view metadata as a theory about the underlying data sets. Given facts and

principles, the metadata would be used to "predict" the need for a particular data set. Viewed in
this way, metadata would be analogous to a theory in the deductive model of inquiry, and it would
be reasonable to build the theory as a logic program that would be analyzed, tested, and revised.

Two of the most successful approaches to building knowledge representation systems have
been semantic networks and frames. One advantage of semantic networks is the simplicity with
which logic can be used to answer questions. Frames have proven invaluable in organizing large
numbers of facts. Both of these knowledge representation approaches were used to specify the
requirements for the TIMS and CAMS metadata (Saacks and Lopez, 1992). Metadata was
organized as a semantic network using explicit relationships between objects. Complex objects
were represented as a single frame instead of a larger network.

An abbreviated portion of the semantic network developed to specify the metadata for the
TIMS and CAMS data holdings at SSC is given in Figure 1. The data set pointer objects
(sscl00, sscll0, ..., sscl80) are stacked and associated with the TIMS or CAMS sensor

247

that created it. This is done only for the convenience of presentation. Figure 1 shows that the
sensor object inherits from both the tool object and the platform object. This is an instance of

multiple inheritance. Similarly, the data set pointer objects inherit from the flight object, and

from either the rims or cams object. What Figure 1 does not show is the complexity of each
object.

a_part_of
mission tool

a_part_of

a_klnd_of

platform

flight sensor

a_part_of

a_part_of

mchannel s

a_klnd_of

ssclO

sscl

sscl

sscl

sscl

sac1

created_uslng

created

using

a_klnd_of

tlms

cams

Figure 1. Metadata as a semantic network.

248

Figure 2 takes some of the obj_ts in Figure 1 and develops them as frames with both unf'flled
and filled slots. This shows the complexity of the objects as well as the concept of slot
inheritance. For example, all multichann¢l sensors (mchannel_s) have a resolution slot but it
is not filled unless there is a specific data set pointer. Since the mchannel_s frame has a
resolution slot, the tiros frame, which is a_kind_of mchannel_s, has it, too.

sensor frame flight frame

a_klnd_of: tool
a_part_of: platform

a_part_of:
location:
date:

mchannel_s frame _--

a_kind_of: sensor
number of channels:
mlnwave:

maxwave: F

resolution:

t tlms frame

a_klnd_of: mchannel_s
number of channels: 6
mlnwave: 8.2
maxwave: 12.2
resolution:

frame

a_klnd_of: mchannel_s
number of channels: 9
mlnwave: 0.45
maxwave: 12.5
resolution:

cams

mission

Tsscl00 frame

created_using: rims
a_part_of: flight
location: Guatemala
date: 04/20/90
resolution: 19

ssc160 frame

I Fcreated_uslng: cam s
I a part of: flight m

location: Pledras Negras l
I I date: 05/04/90 R

J

Figure 2. Metadata as Irames.

249

The semantic network and frames indicated facts and principles that had to be represented in
the metadata. However, we still needed to know if we could reason with this knowledge. Could

the metadata provide a deductive logic that would allow predictions to be derived about what data
to retrieve? The work of McEneaney (1990) suggested the use of logic programming to address

this question.

Taking the frames, we coded the metadata into PROLOG. For example, the flight,
mehannel_s, and rims frames became the following:

% Flight Frame ...

value(flight,a_part_of,mission).

slot(flight, location).
slot(flight,date).

% Multichannel Sensor Frame

value(mchannel_s,a_kind_of, sensor).

slot(mchannel_s,number of channels).
slot(mchannel_s,minwave).
slot(mchannel s,maxwave).
slot(mchannel_s,resolution).

units(mchannel_s,minwave,micron).
units(mchannel_s,maxwave,micron).
units(mchannel s,resolution ,meter).

% TIMS Frame ..

value(tims,a_kind_of, mchannel_s).
value(tims,number of channels,6).
value(tims,minwave,8.2).
value(tims,maxwave, 12.2).

Note that the slot predicate is used for those slots that are unfilled, while the value predicate is
used for those slots that are filled. This approach makes writing inference rules simpler. Also,
since slots having numeric values can have associated information, say about the units of
measurement, we have included a units predicate.

The data set pointer frames here require the use of the value predicate only. However, in a
completely developed metadata system, the frame would contain the rules by which the underlying
data could be retrieved (i.e., E-mail addresses, login accounts, telenet machine numbers, etc.).

The frame name would be the "entry_id" as def'med in the NSSDC Directory Interchange Format
Manual. For our prototype, the data set frame names are keys that we want our metadata to
predict. Some examples of data set pointer frames written in PROLOG are:

250

% DataSet Pointer Frames

value(ssc 110,created_using,tims).
value(ssc 1 lO,a_part_of, flight).
value(sscl lO,location,'Site 1/Peten').
value(ssc 110,date,'04/21/90').
value(ssc 110,resolution,5).

value(ssc 120,created_using,tims).
value(ssc 120,a_part_of,flight).
value(ssc 120,1ocation,'Site 1/Peten').
value(ssc 120,date,'04/22/90').
value(ssc 120,resolution,5).

value(ssc 130,created_using,tims).
value(ssc 130,a_part_of, flight).
value(ssc 130,1ocation,'Piedras Negras').
value(ssc 130,date,'04/23/90').
value(ssc 130,resolution,5).

The inference rules that can be applied to these frames can be written independently of the

particular application. To be able to test and debug the metadata specification, we need value
inheritance rules, slot inheritance rules, rules enabling qualifying slots to be inherited, and a good

deal more. An example of the slot inheritance rule is:

has_slot(Object,Slot) :- slot(Object,Slot).
has_slot(Object,Slot) :- value(Object,a_kind_of, Superclass), has_slot(Superclass,Slot).

It should be mentioned at this point that the principle control mechanism of the "standard"
PROLOG interpreter is depth first searching. Since PROLOG is an extensible language, other

control strategies may be substituted.

The following are some examples of queries to and responses from the PROLOG code:

?- has_value(tims,Metadata_slot,Slot_value).
Metadata slot = a kind of
Metadata-slot = n_mbff of channels
Metadata-slot = minwave
Metadata-slot = maxwave
Metadata-slot = a kind of
Metadata-slot - a-kind-of

Metadata-slot = a-part--of

Slot value = mchannel s
D

Slot-value = 6
Slot-value = 8.20
Slot-value = 12.20
Slot-value = sensor
Slot-value = tool

Slot-value = platform

?- has_slot(What,minwave).
What = mchannel s What = tiros What = cams

?- has_value(Entry_id,created_using,tims), has_value(Entry_id,location,'Site 1/Peten').
Entry_id = sscll0 Entry_id = sscl20

261

?- has_slot(Frame,Something),has_value(Entry_id,Something,'PiedrasNegras').
Frame = flight Something = location Entry id = sscl30

Frame = flight Something = location Entry[id = sscl60

?- has_value(ssc110,created_using,Sensor),has_value(Sensor, minwave,Minwave),
has_units(Sensor,minwave,Units).

Sensor = tiros Minwave = 8.2 Units = microns

The first query demonstrates a browse of the TIMS frame. The responses reveal the filled
slots in the TIMS frame, as well as the filled slots in the Multichannel Sensor and Sensor frames,
since the TIMS frame inherits those values. The second query looks for those frames that have a

particular slot, filled or unfilled. The third query is the command, "Give the key for any TIMS
data set on Site 1/Peten." This is a more complex query than the previous ones in that it involves
two constraints on the data set pointer frames. The fourth query is an example of partial
information obtaining a result. This query seeks to find ancillary information about Piedras
Negras data sets as well as keys. Finally, the fifth query represents the question, "What is the
minwave and its units for the sensor used in creating the data set with key ssc110?"

In developing the PROLOG model of the metadata, our goal was to show what would be
obtained by browsing, and to verify that certain keys would be obtained when particular facts
were given in a query. Hence in a very empirical manner addressing the question, "Does the
metadata provide an accurate knowledge model?" Earth scientists could propose questions and we
could query the PROLOG model to determine if the metadata produced usable results.

Conclusion

PROLOG is an AI tool that can be used to write and test metadata specifications. A PROLOG

model of the metadata can be used to gain insights into the relationships that the metadata attempts
to capture. By querying the PROLOG model built for the TIMS and CAMS data sets at SSC, we
were able to confLrm, relationships and access paths to data set pointers. Furthermore, we gained
new insights into relationships, and realized the existence of relationships that had gone unnoticed,
such as the need.for a created_using relationship. PROLOG can be used to quickly prototype
metatlata betore it is embedded in an intelligent information system, thus saving time and money
by insuring that needs are met. Furthermore, since PROLOG is at the heart of logic programming
languages such as LDL and LOGIN, it is conceivable that the work done with metadata

specification can flow directly into an intelligent information system designed for accessing very
large collections of data.

References

Ait-Kaci, H., Nasr, R., and Seo J. (1990). Implementing a Knowledge-based Library
Information System with Typed Horn Logic. Information Processing and Management,
26(2), 249-268.

Campbell, W. and Cromp, R. (1990). Evolution of an Intelligent Information Fusion System.
Photogrammetric Engineering and Remote Sensing, 56(6), 867-870.

Campbell, W., Cromp, R., Hill, S., Goettsche, C. and Dorfman, E. (1990). Intelligent
Information Fusion for Spatial Data Management. Proceedings of the 4th International
Symposium on Spatial Data Handling, 2, 567-578.

Cercone, N. and McCaila, G. (1987). The Knowledge Frontier: Essays in the Representation of
Knowledge, New York: Springer Verlag.

Cromp, R. (1988). The Advice/Inquirer: A System for High-level Acquisition of Expert
Knowledge. Telematicsandlnformatics, 5(3), 297-312.

252

Cromp, R. and Crook, S. (1989). An Intelligent User Interface for Browsing Satellite Data
Catalogs. Telematics and Informatics, 6(3/4), 299-312.

Denney, R. (1991). Test-case Generation from PROLOG-based Specification. IEEE Software,
8(2), 49-57.

Dozier, J. (1990). Looking Ahead to EOS: The Earth Observing System. Computers in
Physics, 4(3), 248-259.

Dorfman, E. (1991). Architecture of a Large Object-oriented Database for Remotely Sensed

Data. Proceedings of ACSM/SPRS/Auto Carto 10.
Genesereth, M. and Ginsberg, L. (1985). Logic Programming. Communications of the ACM,

28(9), 933-941.
Goyal, P. (1989). Intelligent Information Systems: The Concept of an Intelligent Document.

Information Systems, 14(4), 351-358.
Kerschberg, L. (1990). Expert Database Systems: Knowledge/Data Management Environments

for Intelligent Information Systems. Information Systems, 15(1), 151-160.
Lucas, R. (1988). Database Applications Using PROLOG. New York: John Wiley and Sons.
McEneaney, J. (1990). Logic Programming as a Theoretical Tool in Educational Research.

Journal of Artificial Intelligence in Education, 2(1), 63-78.
Moller-Jensen, L. (1990). Knowledge-based Classification of Urban Area Using Texture and

Context Information in Landsat-TM Imagery. Photogrammetric Engineering and Remote

Sensing, 56(6), 899-904.
Naqvi, S. and Tsur, T. (1989). A Logical Language for Data and Knowledge Bases. Rockville:

Computer Science Press.
Roelofs, L. and Campbell, W. (1990). Using Expert Systems to Implement a Semantic Data

Model of a Large Mass Store System. Telematics and Informatics, 7(3/4), 361-377.
Saacks, M. and Lopez, A. (1992). A Frame-Based Design for the TIMS and CAMS Metadata

for a Stennis Information Management System. Under review.
Short, N. and Shastri, L. (1990). The Application of Connectionism to Query

Planning/Scheduling in Intelligent User Interfaces. Telematics and lnformatics, 7(3/4),
209-220.

Tanaka, H. (1988). DCKR-Knowledge Representation in PROLOG and its Application to
Natural Language Processing. In Proceedings of the First Franco-Japanese Symposium in
Programming of Future Computers, Fuchi, K. and Nivat, M. (Eds.), 427-439. Amsterdam:
Elsevier Science Publishing.

Yan, S. (1991). Foundations of Declarative Testing and Debugging in Logic Programming.

New Jersey: Ablex Publishing.

Acknowledgements - The authors would like to thank Kirk Sharp, Gay Irby, Bobby Junkin, and Terry Jackson of
the Information Systems Division (NASAJSSC), Tom Sever and Doug Rickman of the Earth Science Division
(NASA/SSC), and Bill Campbell and Bob Cromp of the NSSDC IDM project team (NASA/GSFC) for their

comments and support.

253

Call for Papers

N/ A od.ar. on eren oonApplications of Artificial Intelligence

_ _)_)_ May 1993NASA Goddard Space Flight Center

Greenbelt, Maryland

The Eighth Annual Goddard Conference on Space Applications of Artificial
Intelligence will focus on AI research and applications relevant to space systems,

space operations, and space science. Topics will include, but are not limited to:

,_ Knowledge-based spacecraft command & control

Expert system management & methodologies

Distributed knowledge-based systems

Intelligent database management

Fault-tolerant rule-based systems

Simulation-based reasoning

'_ Fault isolation & diagnosis

'_ Planning & scheduling

'_ Knowledge acquisition
Robotics & telerobotics

'_ Neural networks

Image analysis

Original, unpublished papers are now being solicited for the conference. Abstracts

should be 300-500 words in length, and must describe work with clear AI content

and applicability to space-related problems. Two copies of the abstract should be

submitted by September 1, 1992 along with the author's name, affiliation, address

and telephone number. Notification of tentative acceptance will be given by

September 16, 1992. Papers should be no longer than 15 pages and must be
submitted in camera-ready form for final acceptance by November 16, 1992.

Accepted papers will be presented formally or as poster presentations, which may

include demonstrations. All accepted papers will be published in the Conference

Proceedings as an official NASA document, and select papers will appear in a

special issue of the international journal Telematics and lnformatics. There will be a

Conference award for Best Paper.

No commercial presentations will be accepted

Sponsored by NASA/GSFC

Mission Operations and
Data Systems Directorate

1993 Goddard Conference on Space Applications

of Artificial Intelligence

May 1993 -- NASA/GSFC, Greenbelt, MD

Q Abstracts due: Sept. 1, 1992 Q Send abstracts to:

Q Papers due: Nov. 16, 1992 Carl F. Hostetter
NASA/GSFC

Q For further info call: Code 531.1

(301) 286-3150 Greenbelt, MD 20771

t_RECEDIN_G PACE BLANK NOT FILMEI_r_

Form Approved

REPORT DOCUMENTATION PAGE omen. o_-o,u
Puiol¢ rOl_Oetlng burd4m lo¢ It_ ¢ollKIk_t el Infofllmllon _ OelinlI4KI tO mv_r_ 1 ho_ pOf feopOrdm. Inclu(_ the tim= Io¢ q IRd41,/Ar_ i_l_n_ltu=m, Ikwmr=_ _qp _ I_/fO_. _,w_. q_

and n-_nt=ntn 0 ehe d_u= needed, and oo.l_eJlng _cl revlm_n e the cdeak_ (_ I_oqrr_l_. g4mcl _ f_dlr_ It_ Ixmden eekVt_le m =my mher _ el INs _ el

Inloqmldiolt, krldudvt_ su0_14llorw for roG_uCt_l Ihhl I_rd4Nt. Io W&s_on l-_lckludul¢Kll _levk2_, _lrIcIofllUI lot I/tlormml_1 _=dfOfll _ 1_0_8, 1216 _(N'IKN1 _ Hi_r/lly,

2o4.a. va zzzo_4_. ,_, _, n,_.. =,u,,,_l,,_ ,,, ,_1=. p,p,,,,_ _=_,== p_p= p_o_.olu I. w,,_lp=, pc =oeo_.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1992 Conference Publication,
4. TITLEANDSUBTITLE

1992 Goddard Conference on Space Applications of Artificial
Intelligence

6. AUTHOR(S)

James L. Rash, Editor

7. PERFORMINGORGANIZATIONNAME(S)ANDADORESS{ES)

NASA-Goddard Space Flight Center
Greenbelt, Maryland 20771

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES)

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

S. FUND4NG NUMBERS

JON-530-030-09-OI-25

8. PERFORMING ORGANIZATION

REPORT NUMBER

92B00045
Code 530

10. SPONSORINGUMONITORING

AGENCY REPORT NUMBER

NASA CP-3141

11. SUPPLEMENTARY NOTES

Rash: NASA-Goddard Space Flight Center, Greenbelt, Maryland, 20771

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Unclassified- Unlimited
Subject Category 63

13. ABSTRACT (Maximum 200 words)

This publication comprises the papers presented at the 1992 Goddard Conference on Space

Applications of Artificial Intelligence held at the NASA/GOddard Space Right Center, Greenbelt,

Maryland, on May 5-6, 1992. The purpose of this annual conference is to provide a forum in which

current research and development directed at space applications of artificial intelligence can be

presented and discussed. The papers in this proceedings fall into the following areas: Planning and

Scheduling, Control, Fault Monitoring/Diagnosis/Recovery, Information Management, Tools, Neural

Networks, and Miscellaneous Applications.

14. SUBJECTTERMS

Artificial Intelligence, expert systems, planning, scheduling, fault isolation,
fault diagnosis, control, neural networks.

17. SECURITYCLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

11l.SECUNfi-Y CLkS_iFiCATION
OF ABSTRACt"
Unclassified

1S. NUMBER OF PAGES

264

le. PRICE CODE

A12
20. LMTATION OF ABSTRACT

UL

NSN 7540-O1-280-55OO SlandardForm2_ (Rev, 24B)
Fiim:lt_ I_ N4S_ Sla, _e-l& 2m I_

National Aeronautics and _,-_-c._

Code JTT

Washington, D.C.
20546-0001
Official Business

Penalty for Private Use, $300

National Aeronautics and

Space Administration

Washington, D,C. SPECIAL FOURTH ¢1._SS MAIL
20546 BOOK

NASA-451

Official Businecs

Penalty for Private Use $300

